

Sudbury Area Risk Assessment Volume II

Appendix C:

Background Exposures

This page is left blank intentionally

SUDBURY AREA RISK ASSESSMENT VOLUME II

APPENDIX C: BACKGROUND EXPOSURES

Table of Contents

Page

C-1.0 ARSENIC BACKGROUND EXPOSURE	2
C-1.1 Sources and Environmental Fate	2
C-1.1.1 Sources	2
C-1.1.2 Environmental Fate and Speciation in Environmental Media	
C-1.1.2.1 Atmosphere	
C-1.1.2.2 Surface Water and Groundwater	
C-1.1.2.3 Soils and Sediments	
C-1.1.2.4 Biota	
C-1.1.2.5 Foods	
C-1.2 Background Exposure Concentrations in Ontario and Canada C-1.2.1 Background Concentrations in Air	
C-1.2.2 Background Concentrations in Surface Water and Groundwater	
C-1.2.3 Background Concentrations in Soils and Sediment	
C-1.2.4 Background Concentrations in Biota and Foods	
C-1.3 Estimated Canadian Daily Intakes	
C-1.3.1 Dietary Intake C-1.3.2 Relative Contributions of Exposure Pathways to Total Exposure	
C-1.3.2 Relative Contributions of Exposure Pathways to Total Exposure	
C-1.4 Indices of Human Exposure	
-	
C-2.0 COBALT BACKGROUND EXPOSURE	
C-2.1 Sources and Environmental Fate	
C-2.1 Sources and Environmental Fate C-2.1.1 Sources	29
C-2.1 Sources and Environmental Fate C-2.1.1 Sources C-2.1.2 Environmental Fate and Speciation in Environmental Media	29 29 29
C-2.1 Sources and Environmental Fate C-2.1.1 Sources C-2.1.2 Environmental Fate and Speciation in Environmental Media C-2.1.2.1 Atmosphere	29 29 29 29
C-2.1 Sources and Environmental Fate C-2.1.1 Sources C-2.1.2 Environmental Fate and Speciation in Environmental Media	29 29 29 29 30
C-2.1 Sources and Environmental Fate C-2.1.1 Sources C-2.1.2 Environmental Fate and Speciation in Environmental Media C-2.1.2.1 Atmosphere C-2.1.2.2 Surface Water and Groundwater	29 29 29 29 30 30
C-2.1 Sources and Environmental Fate C-2.1.1 Sources C-2.1.2 Environmental Fate and Speciation in Environmental Media C-2.1.2.1 Atmosphere C-2.1.2.2 Surface Water and Groundwater C-2.1.2.3 Soils and Sediments	29 29 29 29 29 30 30 30
C-2.1.1 Sources and Environmental Fate C-2.1.1 Sources C-2.1.2 Environmental Fate and Speciation in Environmental Media C-2.1.2.1 Atmosphere C-2.1.2.2 Surface Water and Groundwater C-2.1.2.3 Soils and Sediments C-2.1.2.4 Biota and Foods	29 29 29 29 30 30 30 30 31
 C-2.1 Sources and Environmental Fate	29 29 29 29 30 30 30 31 31
 C-2.1 Sources and Environmental Fate	29 29 29 29 30 30 30 31 31 31
 C-2.1 Sources and Environmental Fate	29 29 29 30 30 30 31 31 31 31 32
 C-2.1 Sources and Environmental Fate	29 29 29 29 30 30 30 31 31 31 31 32 37
 C-2.1 Sources and Environmental Fate	29 29 29 29 30 30 30 31 31 31 32 37 43
 C-2.1 Sources and Environmental Fate	29 29 29 29 30 30 30 31 31 31 31 32 37 43 43

C-3.0 COPPER BACKGROUND EXPOSURE	46
C-3.1 Sources and Environmental Fate	46
C-3.1.1 Sources	
C-3.1.2 Environmental Fate and Speciation in Environmental Media	
C-3.1.2.1 Atmosphere	
C-3.1.2.2 Surface Water and Groundwater	47
C-3.1.2.3 Soils and Sediments	
C-3.1.2.4 Biota and Foods	47
C-3.2 Background Exposure Concentrations in Ontario and Canada	
C-3.2.1 Background Concentrations in Air	
C-3.2.2 Background Concentrations in Surface Water and Groundwater	
C-3.2.3 Background Concentrations in Soils and Sediment	
C-3.2.4 Background Concentrations in Biota and Foods	
C-3.3 Estimated Canadian Daily Intakes	60
C-3.3.1 Dietary Intake	
C-3.3.2 Relative Contributions of Exposure Pathways to Total Exposure	
C-3.4 Indices of Human Exposure	61
C-4.0 LEAD BACKGROUND EXPOSURE	62
C-4.1 Sources and Environmental Fate	
C-4.1.1 Sources	
C-4.1.2 Environmental Fate and Speciation in Environmental Media	
C-4.1.2.1 Atmosphere	62
C-4.1.2.2 Surface Water and Groundwater	
C-4.1.2.3 Soils and Sediments	
C-4.1.2.4 Biota and Foods	
C-4.2 Background Exposure Concentrations in Ontario and Canada	
C-4.2.1 Background Concentrations in Air	
C-4.2.2 Background Concentrations in Surface Water and Groundwater	
C-4.2.3 Background Concentrations in Soils and Sediment	
C-4.2.4 Background Concentrations in Biota and Foods	
C-4.3 Estimated Canadian Daily Intakes	
C-4.3.1 Dietary Intake	
C-4.3.2 Relative Contributions of Exposure Pathways to Total Exposure	
C-4.4 Indices of Human Exposure	
C-5.0 NICKEL BACKGROUND EXPOSURE	
C-5.1 Sources and Environmental Fate	
C-5.1.1 Sources	
C-5.1.2 Environmental Fate and Speciation in Environmental Media	
C-5.1.2.1 Atmosphere C-5.1.2.2 Surface Water and Groundwater	
C-5.1.2.2 Surface water and Groundwater	
C-5.1.2.4 Biota and Foods	
C-5.2 Background Exposure Concentrations in Ontario and Canada	
C-5.2.1 Background Concentrations in Air	
C-5.2.2 Background Concentrations in Surface Water and Groundwater	
C-5.2.3 Background Concentrations in Soils and Sediment	
C-5.2.4 Background Concentrations in Biota and Foods	

C-5.3 Estimated Canadian Daily Intakes	
C-5.3.1 Dietary Intake	
C-5.3.2 Relative Contributions of Exposure Pathways to Total Exposure	
C-5.4 Indices of Human Exposure	
C-6.0 SELENIUM BACKGROUND EXPOSURE	98
C-6.1 Sources and Environmental Fate	
C-6.1.1 Sources	
C-6.1.2 Environmental Fate and Speciation in Environmental Media	
C-6.1.2.1 Atmosphere	
C-6.1.2.2 Surface Water and Groundwater	
C-6.1.2.3 Soils and Sediments	
C-6.1.2.4 Biota and Foods	
C-6.2 Background Exposure Concentrations in Ontario and Canada	
C-6.2.1 Background Concentrations in Air	
C-6.2.2 Background Concentrations in Surface Water and Groundwater	
C-6.2.3 Background Concentrations in Soils and Sediment	
C-6.2.4 Background Concentrations in Biota and Foods	
C-6.3 Estimated Canadian Daily Intakes	
C-6.3.1 Dietary Intake	
C-6.3.2 Relative Contributions of Exposure Pathways to Total Exposure	
C-6.4 Indices of Human Exposure	
-	
C-7.0 REFERENCES	109

Tables

Page

Proportions of inorganic arsenic in selected foods, calculated based on mean	
concentrations measured by Schoof et al. (1999)	8
Ontario and Canadian Background Arsenic Concentrations in Air	9
Ontario and Canadian Background Arsenic Concentrations in Fresh Surface Water	10
Ontario and Canadian Background Arsenic Concentrations in Groundwater	11
Ontario and Canadian Background Arsenic Concentrations in Drinking Water	11
Ontario and Canadian Background Arsenic Concentrations in Precipitation	12
Ontario and Canadian Background Arsenic Concentrations in Soil	14
Generic Background Concentrations of Arsenic in Soil by Soil Type (Kabata-Pendias	5
and Pendias, 1985)	15
Ontario and Canadian Background Arsenic Concentrations in Dust	15
Ontario and Canadian Background Arsenic Concentrations in Sediments	17
Ontario and Canadian Background Arsenic Concentrations in Biota	18
Typical Total Arsenic Concentrations in Canadian Foods	19
Dietary Intake Rates for Arsenic	23
Background Arsenic Concentrations in Human Biological Tissues and Fluids	27
Ontario and Canadian Background Cobalt Concentrations in Air	31
Ontario and Canadian Background Cobalt Concentrations in Fresh Surface Water	32
Ontario and Canadian Background Cobalt Concentrations in Groundwater	32
Ontario and Canadian Background Cobalt Concentrations in Drinking Water	32
Ontario and Canadian Background Cobalt Concentrations in Soil	34
Ontario and Canadian Background Cobalt Concentrations in Dust	35
	concentrations measured by Schoof <i>et al.</i> (1999)

Table C.20	Generic Background Concentrations of Cobalt in Soil by Soil Type (Kabata-Pendias and Pendias, 1985)	35
Table C.21	Ontario and Canadian Background Cobalt Concentrations in Sediments	
Table C.22	Typical Total Cobalt Concentrations in Canadian Foods	
Table C.23	Dietary Intake Rates of Cobalt	
Table C.24	Background Cobalt Concentrations in Human Biological Tissues and Fluids	
Table C.25	Ontario and Canadian Background Copper Concentrations in Air	
Table C.26	Ontario and Canadian Background Copper Concentrations in Fresh Surface Water	
Table C.27	Ontario and Canadian Background Copper Concentrations in Groundwater	
Table C.28	Ontario and Canadian Background Copper Concentrations in Drinking Water	
Table C.29	Ontario and Canadian Background Copper Concentrations in Precipitation	
Table C.30	Ontario and Canadian Background Copper Concentrations in Soil.	
Table C.31	Ontario and Canadian Background Copper Concentrations in Dust	
Table C.32	Generic Background Concentrations of Copper in Soil by Soil Type (Kabata-Pendias	
	and Pendias, 1985)	52
Table C.33	Ontario and Canadian Background Copper Concentrations in Sediments	54
Table C.34	Typical Total Copper Concentrations in Canadian Foods	54
Table C.35	Dietary Intake Rates for Copper	
Table C.36	Background Copper Concentrations in Human Biological Tissues and Fluids	
Table C.37	Ontario and Canadian Background Lead Concentrations in Air	65
Table C.38	Ontario and Canadian Background Lead Concentrations in Fresh Surface Water	66
Table C.39	Ontario and Canadian Background Lead Concentrations in Groundwater	66
Table C.40	Ontario and Canadian Background Lead Concentrations in Drinking Water	67
Table C.41	Ontario and Canadian Background Lead Concentrations in Soil	68
Table C.42	Ontario and Canadian Background Lead Concentrations in Dust	69
Table C.43	Generic Background Concentrations of Lead in Soil by Soil Type (Kabata-Pendias	
	and Pendias, 1985)	
Table C.44	Ontario and Canadian Background Lead Concentrations in Sediments	
Table C.45	Ontario and Canadian Background Lead Concentrations in Fish (Freshwater)	
Table C.46	Ontario and Canadian Background Lead Concentrations in Aquatic Plants	
Table C.47	Ontario and Canadian Background Lead Concentrations in Terrestrial Biota	
Table C.48	Typical Lead Concentrations in Canadian Foods	
Table C.49	Dietary Intake Rates of Lead	
Table C.50	Background Lead Concentrations in Human Biological Tissues and Fluids	
Table C.51	Ontario and Canadian Background Nickel Concentrations in Air	
Table C.52	Ontario and Canadian Background Nickel Concentrations in Fresh Surface Water	
Table C.53	Ontario and Canadian Background Nickel Concentrations in Groundwater	
Table C.54	Ontario and Canadian Background Nickel Concentrations in Drinking Water	
Table C.55	Ontario and Canadian Background Nickel Concentrations in Soil	
Table C.56	Ontario and Canadian Background Nickel Concentrations in Dust.	. 86
Table C.57	Generic Background Concentrations of Nickel in Soil by Soil Type (Kabata-Pendias	07
$T_{1} = 0.59$	and Pendias, 1985)	
Table C.58	Ontario and Canadian Background Nickel Concentrations in Sediments	
Table C.59	Ontario and Canadian Background Nickel Concentrations in Fish (Freshwater)	
Table C.60	Typical Total Nickel Concentrations in Canadian Foods	
Table C.61	Dietary Intake Rates of Nickel	
Table C.62	Background Nickel Concentrations in Human Biological Tissues and Fluids	
Table C.63	Ontario and Canadian Background Selenium Concentrations in Air	
Table C.64	Ontario and Canadian Background Selenium Concentrations in Fresh Surface Water	101

Table C.65	Ontario and Canadian Background Selenium Concentrations in Groundwater	101
Table C.66	Ontario and Canadian Background Selenium Concentrations in Drinking Water	101
Table C.67	Ontario and Canadian Background Selenium Concentrations in Soil	103
Table C.68	Ontario and Canadian Background Selenium Concentrations in Dust	103
Table C.69	Generic Background Concentrations of Selenium in Soil by Soil Type (Kabata-Pend	dias
	and Pendias, 1985)	104
Table C.70	Ontario and Canadian Background Selenium Concentrations in Terrestrial Biota	104
Table C.71	Typical Selenium Concentrations in Canadian Foods	105
Table C.72	Dietary Intake Rates of Selenium	107
Table C.73	Background Selenium Concentrations in Human Biological Tissues and Fluids	108

Figures

Page

Figure C-1	Tukey Boxplots, by EcoRegion in Southern Ontario, of Arsenic in C-horizon (70 to 100 cm) and Surface (top 25 cm) Soils
Figure C-2	Tukey Boxplots, by EcoRegion in Ontario, of Arsenic in Sediment from Deep Centre- lake Basins, below the Surface Gyttja
Figure C-3	Tukey Boxplots, by EcoRegion in Southern Ontario, of Cobalt in C-horizon (70-100 cm) and Surface (top 25 cm) Soils
Figure C-4	Tukey Boxplots, by EcoRegion in Ontario, of Cobalt in Sediment from Deep Centre-lake
Figure C-5	Basins, below the Surface Gyttja
Figure C-6	Tukey Boxplots, by EcoRegion in Ontario, of Copper in Sediment from Deep Centre-lake Basins, below the Surface Gyttja
Figure C-7	Tukey Boxplots, by EcoRegion in Southern Ontario, of Lead in C-horizon (70-100 cm) and Surface (top 25 cm) Soils
Figure C-8	Tukey Boxplots, by EcoRegion in Ontario, of Lead in Sediment from Deep Centre-lake Basins, below the Surface Gyttja
Figure C-9	Tukey Boxplots, by Ecoregion in Southern Ontario, of Nickel in C-horizon (70-100 cm) and Surface (top 25 cm) Soils
Figure C-10	Tukey Boxplots, by EcoRegion in Ontario, of Nickel in Sediment from Deep Centre-lake Basins, below the Surface Gyttja
Figure C-11	Tukey Boxplots, by EcoRegion in Southern Ontario, of Selenium in C-horizon (70-100 cm) and Surface (top 25 cm) Soils

This page is left blank intentionally

APPENDIX C BACKGROUND EXPOSURES

The following appendix provides a detailed literature review of the various sources of data collected describing background exposures to each of the COCs for the HHRA of the Sudbury Soils Study. This data was then used in the HHRA to evaluate background exposures to a typical Ontario resident *versus* those exposures incurred by residents of the GSA. This data should be considered in conjunction with the estimated daily intake (EDI) information provided in Appendix D.

C-1.0 ARSENIC BACKGROUND EXPOSURE

C-1.1 Sources and Environmental Fate

C-1.1.1 Sources

Arsenic is naturally present in terrestrial and aquatic environments from weathering and erosion of rocks and soils. It is present in the earth's crust at an average concentration of 2 to 5 mg/kg (Tamaki and Frankenberger, 1992), but naturally arsenic-enriched bedrock is relatively common in areas of precious metal deposits. For example, high arsenic content has been reported in the soils, sediments and water of precious metal deposits in Northern Ontario, Quebec, New Brunswick and Nova Scotia (*e.g.*, Boyle *et al.*, 1969; Brooks *et al.*, 1982; Bottomley, 1984).

The major anthropogenic sources of arsenic are base-metal and gold mines and smelting operations. Gold-milling operations and gold ore roasters discharge significant amounts of arsenic in their liquid effluents and air emissions. Weathering of waste rock and tailings also release significant amounts of arsenic into the environment, especially at abandoned base and precious metal mine sites where no leachate treatment systems are in place (Errington and Ferguson, 1987). The mining, smelting, milling and roasting of base and precious metals accounts for the majority of As₂O₃ present in the atmosphere. Other anthropogenic sources include pesticide use, wood preservation, coal-fired electricity generation, petroleum refining, antifouling paints and disposal (*e.g.*, incineration) of domestic and industrial wastes (Frank *et al.*, 1976; Henning and Konasewich, 1984; Evans *et al.*, 1985; van Voris *et al.*, 1985; PACE, 1983; Environment Canada, 1985; 1987; OME, 1988; Adams *et al.*, 1994). The glass and ceramics industries can also be sources of arsenic, as arsenic is utilized within these industries (WHO, 1981).

Arsenic is also released into the environment through natural processes: volcanic eruptions; forest fires; volatilization of methylarsenines from soil and decaying plant and animal material (Chilvers and Peterson, 1987; NRCC, 1978; Walsh *et al.*, 1979). Approximately one third of the atmospheric flux of arsenic is of natural origin (IPCS, 2001).

C-1.1.2 Environmental Fate and Speciation in Environmental Media

Due to its reactivity and mobility, arsenic cycles extensively through both biotic and abiotic components of terrestrial and aquatic systems, where it can undergo a variety of chemical and biochemical transformations, including oxidation, reduction, methylation and demethylation (Cullen and Reimer, 1989). The oxidation state of arsenic is the single most important factor controlling the solubility, mobility, environmental fate, bioavailability, and toxicity of its compounds (Masscheleyn *et al.*, 1991).

C-1.1.2.1 Atmosphere

The arsenic species present in the air are dependent on the sources and on reactions with other atmospheric substances. Most of the arsenic released to the air is in the form of arsenic trioxide (As_2O_3) , which is the predominant species released from smelters, fossil fuel combustion, and mineral ore roasters. The trioxide rapidly sublimates in the atmosphere to form the gaseous species, As₄O₆ (Rabano et al., 1989). This gaseous compound may be adsorbed or complexed to suspended particulate matter or it may condense to a solid upon cooling (Cullen and Reimer, 1989; Gagan, 1979). Volatile arsines and methylarsines are also released to the atmosphere by soil and aquatic microbial processes, where they are eventually oxidized (especially in the presence of sunlight) and bound to particulates, typically as methylated As(V) species (Parris and Brinckman, 1976; NRCC, 1978). The majority of atmospheric arsenic is associated with fine particulates (*i.e.*, less than 2.5 µm in diameter), with smaller percentages existing either in the vapour phase, or associated with coarse particulates (>2.5 µm in diameter) (Walsh et al., 1979; Rabano et al., 1989). The As_4O_6 species is believed to be the precursor for inorganic particulate-bound As(III) and As(V) species (Rabano et al., 1989). The chemical mechanism is believed to be similar to the atmospheric reactions that occur with NO_x and SO_x compounds, in which weak acids NO, NO₂ and SO₂ react with alkaline coarse particles to form coarse particulate nitrate and sulfate (Rabano et al., 1989). Inorganic As(III) and As(V) species (arsenites and arsenates) typically occur in the low ng/m³ range in atmospheric particulate matter (Rabano *et al.*, 1989). Other chemical forms of arsenic found in the atmosphere in small quantities include metallic arsenic, and volatile organic arsenicals and their degradation products which result from pesticide applications. Arsenic is removed from the atmosphere via wet and dry deposition processes with an average atmospheric residence time of approximately nine days (Walsh et al., 1979).

FINAL REPORT

C-1.1.2.2 Surface Water and Groundwater

The most abundant species in natural waters are arsenite (As(III)) and arsenate (As(V)) (Bissen and Frimmel, 2003); however, arsenic speciation in surface waters is highly dependent upon pH and redox potential. When As_2O_3 (or As_4O_6) is deposited into aerobic surface waters, it rapidly hydrolyzes to form mobile As(III) species, principally AsO_3^{-3} (arsenite). Arsenite is relatively unstable in aerobic waters and is slowly oxidized to form less mobile As(V) species, principally the arsenates, $HAsO_4^{-2}$ and $H_2AsO_4^{-1}$ (CEPA, 1993). Under anaerobic conditions, arsenates are reduced to arsenite (Korte and Fernando, 1991; Masscheleyn *et al.*, 1991). In deep anoxic waters, insoluble arsenic sulfides are common, while in more shallow and oxygenated waters, As(V) species tend to predominate; As(III) species tend to predominate at mid-depths under reducing conditions (Seyler and Martin, 1989). Phytoplankton blooms in surface waters can result in the biochemical reduction of arsenates to arsenite, as well as the production of methylated arsenic species (Andreae, 1978). Since arsenic does not occur as a cation in fresh surface waters, it does not complex with humic or fulvic acids, nor does it form complexes with other common anions in water to an appreciable extent (Korte and Fernando, 1991).

The mobility of arsenic in aqueous environments is influenced by the pH value, the redox potential, and the presence of adsorbents (*e.g.*, oxides and hydroxides of Fe(III), Al(III), Mn(III/IV), humic substances and clay minerals) (Bissen and Frimmel, 2003). In general, dissolved arsenic is rapidly removed from the water column by biotic uptake, fixation by organic matter, adsorption onto iron or manganese hydroxides or clay particles, precipitation and co-precipitation (Nriagu, 1983). These removal mechanisms result in the majority of arsenic in surface waters being deposited in sediments.

The predominant chemical species in groundwater appear to be inorganic As(V) and to a lesser extent, As(III) (Masscheleyn *et al.*, 1991; Korte and Fernando, 1991). Groundwater normally contains higher arsenic concentrations than surface waters (Boyle and Jonasson, 1973). High groundwater arsenic concentrations may be caused by elevated arsenic content in bedrock, such as in a number of regions of Ontario, Quebec, New Brunswick and Nova Scotia (*e.g.*, Boyle *et al.*, 1969; Brooks *et al.*, 1982; Bottomley, 1984; Méranger *et al.*, 1984a).

C-1.1.2.3 Soils and Sediments

Arsenic speciation in soil is influenced by complex interactions between pH, redox potential, organic content, iron oxyhydroxide (and other hydrous metal oxide) concentrations and soil particle size. The

principal species present in soil are arsenites (As(III)), arsenates (As(V)), and methylated arsenicals from herbicide use (*e.g.*, monomethylarsonic acid, dimethylarsinic acid). The methylated arsenicals have soil

half-lives ranging from 0.5 to 2.9 years but are eventually degraded to carbon dioxide and arsenate by soil microorganisms (Hiltbold, 1975). Some soil arsenic is lost to the atmosphere *via* the microbially-mediated volatilization of arsine and methylarsines (NRCC, 1978). However, soil microbial activity also results in arsenic inputs to the soil through the mobilization of arsenic present in rocks and minerals by microbial oxidation of sulfides and ferrous iron in these minerals to sulfate and ferric iron (Tamaki *et al.*, 1992).

The movement of arsenic species from soil to groundwater is dependent on the properties of the arsenic species, and soil properties such as pH, redox potential, organic content, cation exchange capacity, concentrations of iron oxyhydroxide (and other hydrous metal oxides), soil particle size, and concentrations of other chemicals in the soil (Bissen and Frimmel, 2003; CEPA, 1993). Most arsenic in soils is tightly bound to iron/manganese oxides and clay particles, which reduces the amount of arsenic that can leach into groundwater or be taken up by plants (CEPA, 1993). The use of phosphate fertilizers can result in the mobilization of otherwise tightly bound arsenic in soil (Peryea, 1991). Medium to finegrained, well drained soils can retain arsenic for decades (Veneman et al., 1983). Poorly drained soils do not retain arsenic as efficiently though, as flooding creates an anaerobic environment that results in the mobilization of arsenic (Masscheleyn et al., 1991). Pantsar-Kallio and Manninen (1997) found that more inorganic As(III) and As(V) species were mobilized from sandy soils than from humic or clay soils. In general, inorganic arsenic species have been found to be highly mobile and leachable in sandy versus higher clay content soils (Walsh et al., 1977). Pantsar-Kallio and Manninen (1997) also found that high pH values resulted in greater mobilization of inorganic arsenic than low pH values. However, over a pH range of three to nine, less than 2% of inorganic arsenic was mobilized, indicating that environmental pH changes would have to be drastic to result in the release of significant amounts of arsenic from the soil In all soil mobilization experiments conducted by the authors, As(V) species were the matrix. predominant species extracted from the soil types studied. In an earlier study, Masscheleyn et al., (1991) found that alterations in the oxidation state of arsenic, brought about by changing redox potential and pH, greatly affected its solubility in soil. At high redox levels, arsenic solubility was low and 65 to 98% of the dissolved arsenic was present as As(V). High pH values or reducing conditions resulted in the release of substantial amounts of arsenic into solution; present mainly as As(III). Under moderately reduced conditions, arsenic solubility was mainly controlled by the dissolution of iron oxyhydroxides. Therefore, when arsenic-containing wastes are released to soil, consideration should be given to maintaining a high

soil redox potential and nonalkaline conditions to minimize arsenic solubility and mobility (Masscheleyn *et al.*, 1991).

Sediments are a major long term sink for arsenic, with some studies suggesting sediment retention times of up to 100 years (Nriagu, 1983; Sutherland, 1989). However, some sediment-bound arsenic may be released into pore waters and the water column by organic decomposition processes, or dissolution of iron/manganese hydroxides under anaerobic conditions resulting from sediment reburial (Nriagu *et al.*, 1987; Belzile, 1988). In addition, arsenates can be reduced to arsenites in sediments, which are subsequently methylated by microorganisms to form methylarsinic acids. These can be further reduced to yield volatile methylarsines, which are eventually released to the atmosphere (Wade *et al.*, 1993). While the production of methylarsines in sediments occurs mainly under anaerobic conditions, there is some evidence that this process can also occur under aerobic conditions (Brinckman *et al.*, 1977). The processes that lead to the methylation of arsenic by aquatic microbial species are poorly understood (Anderson and Bruland, 1991); however, detoxification and/or energy generation have been suggested by several authors to be the driving force behind the biomethylation of arsenic (Mitchell and Barr, 1995).

C-1.1.2.4 Biota

The extensive biogeochemical cycling of arsenic results in its occurrence in virtually all living organisms. Although bioconcentration factors (BCFs) for aquatic organisms, including algae, crustaceans, and fish have been reported to be as high as several thousand, arsenic does not bioaccumulate to any great extent, nor does it biomagnify in either aquatic or terrestrial food webs (NRCC, 1978; Eisler, 1988a; Adams et al., 1994). In freshwater aquatic plants, arsenic is mainly present as arseno-lipids, and to a lesser extent, arsenite and methylated As(V) species (Cullen and Reimer, 1989). Arseno-lipids, arseno-sugars, methanoarsenate, dimethylarsenate, and other methylated arsenicals account for 60 to 99% of the arsenic in marine algae and plants (Adams et al., 1994; Cullen and Reimer, 1989). The principal arsenic compounds found in fish and other marine animals are arsenobetaine and arsenocholine (Lawrence et al., 1986; Adams et al., 1994). However, arsenic may also occur in fish tissues as inorganic forms (NRCC, 1978; ATSDR, 1997; CEPA, 1993). The proportion of arsenic in fish tissues that is inorganic has been reported to range from as low as 0.1% to as high as 41% (NRCC, 1978; Vaesson and van Ooik, 1989). It is important from a risk characterization perspective to determine the proportion of inorganic arsenic species that are present in fish as the inorganic forms are the most bioavailable and the most toxic. Complexed organic arsenic species are not readily bioavailable and are more readily eliminated than the inorganic forms. As a result, organic arsenic species are generally considered to be of low toxicity.

Arsenic is present in methylated forms in some terrestrial plants and animals (Nissen and Benson, 1982; NRCC, 1978). Generally, arsenic does not accumulate to high levels in terrestrial plants, as reduced plant growth and other forms of phytotoxicity will occur before arsenic can accumulate to any significant extent (Bennett, 1981). However, some plants are quite tolerant of arsenic in soil (*e.g.*, grapes, corn, carrots, tomatoes, cabbage, tobacco) (Walsh *et al.*, 1977). Furthermore, plant uptake of arsenic is in competition with phosphorus uptake; thus arsenic accumulation is usually restricted as most soils contain greater amounts of phosphorus than arsenic (Adams *et al.*, 1994). On a relative basis, the highest concentrations of arsenic in terrestrial plants tend to occur in plant roots, with intermediate levels occurring in vegetative tissues and the lowest levels in plant reproductive tissues (Walsh *et al.*, 1977).

C-1.1.2.5 Foods

Due to the extensive cycling of arsenic through biotic and abiotic components of terrestrial and aquatic systems, it is not surprising that arsenic has been detected in most foods consumed by humans. The chemical form of arsenic in various foodstuffs varies considerably. For example, much of the arsenic in fish is present in a highly complexed form that is not readily bioavailable, or as organoarsenicals (e.g., arsenobetaine, arsenocholine) that are rapidly excreted from the body. Arsenosugars are found in seaweed, oysters and mussels (Le, 1999). Soluble inorganic As(III) and As(V) species are the most bioavailable of the arsenic species and are of primary toxicological concern in humans. Based on limited data, the percentage of inorganic arsenic in various foods has been reported to typically range from 0 to 1% in saltwater fish, 5% in vegetables, 10 to 15% in freshwater fish, 15% in potatoes, and fruits, 73% in apple juice, 35 to 43% in rice, 49 to 69% in cereals, flour and breads, 15 to 41% in poultry, and as much as 75 to 100% in milk, dairy products, and meats (Weiler, 1987; OME, 1987). Organic forms of arsenic predominate in fish, vegetables and fruits. For a typical mixed diet, approximately 20% of the estimated daily dietary intake of arsenic is inorganic (Borum and Abernathy, 1994). A study by Yost et al., (1998) suggests that inorganic arsenic may account for 21 to 40% of the total arsenic present in a mixed diet, and that population exposure to inorganic arsenic through the ingestion of food may be greater than previously believed. It has been estimated that the percentage of inorganic arsenic is approximately 75% in meats, 65% in poultry, 75% in dairy products, and 65% in cereals (IPCS, 2001; Yost et al., 1998); while in fruits, vegetables and seafood the percentage of inorganic arsenic is only 10, 5% and 0 to 10%, respectively (IPCS, 2001). Schoof et al. (1999) measured total and inorganic arsenic in samples of 40 food items expected to provide at least 90% of the dietary inorganic arsenic intake in the U.S. Although the food samples were collected in Texas, the authors expect that their arsenic concentration data are representative of typical concentrations in foods throughout the U.S. The ratio of inorganic arsenic to

total arsenic was calculated based on reported mean concentrations for each food item, and is presented in Table C.1.0. Note that ratios were calculated only for those food items where both total and inorganic arsenic were detected at concentrations above the method detection limit.

Table C.1.0	Proportions of inorganic arsenic in selected foods, calculated based on
	mean concentrations measured by Schoof et al. (1999)

Food Item	Total Arsenic (ng/g wet wt.)	Inorganic Arsenic (ng/g wet wt.)	Ratio
Fish and Shellfish ^a	~160 to 2360	n.d.	
Meat, Poultry and Eggs ^a	~14 to 86	n.d.	
Rice			
Rice	303	73.7	0.24
Cereals, Grains and Baked Goods			
Corn meal	38.6	4.4	0.11
Flour	39.1	10.9	0.28
Fruits and Fruit Juices			
Apple juice	7.6	2.8	0.37
Grapes	10.2	3.6	0.35
Grape juice	58.2	9.2	0.16
Watermelon	40.2	8.9	0.22
Root Vegetables			
Carrots	7.3	3.9	0.53
Onions	9.6	3.3	0.34
Other Vegetables			
Cucumber	9.6	4.1	0.43
Peas	4.3	4.5	1 ^b
Spinach	5.1	6.1	1 ^b
Sugars and Sweets			
Beet sugar	12.2	3.5	0.29
Cane sugar	23.8	4.4	0.18
Nuts			
Peanut butter	43.6	4.7	0.11

n.d. Non-detect (concentrations were below the method detection limit)

^a Although levels of total As in these food items are detectable, concentrations of inorganic As were below the method detection limit and a quantitative ratio could not be calculated; however, it can be qualitatively stated that nearly all of the As present in these foods is inorganic.

^b Calculated ratios for these food items exceed 1 because the reported mean concentrations of inorganic arsenic exceed those of total arsenic.

Vélez and Montoro (1998) caution against extrapolating data on arsenic speciation in fresh seafood to processed (*e.g.*, frozen, canned or salted) seafood, since arsenobetaine may not be the dominant species in processed seafood and dimethylarsinic acid is present with a higher mean content in processed *versus* fresh products.

C-1.2 Background Exposure Concentrations in Ontario and Canada

C-1.2.1 Background Concentrations in Air

A U.S. study found air concentrations of arsenic in indoor public places of <0.1 to 1 ng/m³ (mean of 0.4 ng/m³, and <0.13 ng/m³ in places with and without environmental tobacco smoke, respectively (Landsberger and Wu, 1995). Table C.1 provides a summary of arsenic air concentrations from various sampling locations across Canada.

Table C.1	Cable C.1 Untario and Canadian Background Arsenic Concentrations in Air			
Location Description		Concentration	References	
Canada (urban)	annual arithmetic means of PM2.5 samples from 38 urban stations across Canada, 1994 to 2004	range: nd to 0.231 μ g/m ³ mean: 0.00135 μ g/m ³	Dann, 2005 pers. comm.	
Canada (rural)	annual arithmetic means of PM2.5 samples from 8 rural stations across Canada, 1994 to 2004	range: nd to 0.0131 µg/m ³ mean: 0.000850 µg/m ³	Dann, 2005 pers. comm.	
Canada	major urban centres	mean: 0.001 μ g/m ³ (in PM10)	ССМЕ, 1997	
Canada	major urban centres (1983 to 1984 data)	range: <0.003 to 0.013 µg/m ³	EAG, 1984	
Windsor, Ontario	indoor (home and office) samples of personal air taken 1991 to 1992	range: nd to 2.6 ng/m ³ mean: 0.8 ng/m ³	Bell et al., 1994	
Windsor, Ontario	outdoor (residential and commercial neighbourhoods) samples of personal air taken 1991 to 1992	range: 0.4 to 3.3 ng/m ³ mean: 1.3 ng/m ³	Bell et al., 1994	
Windsor, Ontario	6 samples of ambient air taken in 1992	range: 0.4 to 5.4 ng/m ³ mean: 2.5 ng/m ³	Bell et al., 1994	
Windsor, Ontario	1987 to 1988 air data	range: 0.001 to 0.004 μ g/m ³	Environment Canada, 1988	
Canada	11 Canadian cities and one rural location (1985 to 1990 data)	range: <0.0005 to 0.017 μg/m ³ (24 h average) mean: 0.001 μg/m ³ (most cities)	Dann, 1990; Environment Canada, 1990	
Toronto, Ont. Area	arsenic concentration of airborne particulates from 1982 to 1984	range: 0.04 to 0.15 μg/m ³ mean: 0.08 μg/m ³	Brzezinska–Paudyn et al., 1986	
North America	typical ranges for urban and rural areas	urban range: 0.002 to 0.22 μ g/m ³ rural range: 0.001 to 0.007 μ g/m ³	Schroeder et al., 1982	
British Columbia	mean from 3 stations between 1995 and 1998	mean: 0.497 ng/m^3 range: 0 to 8.95 ng/m ³	Dryfhout-Clark, 2004	

Table C.1 Ontario and Canadian Background Arsenic Concentrations in Air

C-1.2.2 Background Concentrations in Surface Water and Groundwater

Arsenic concentrations in fresh waters vary considerably according to the geologic composition of the watershed, and the extent of anthropogenic input (Le, 1999). Background arsenic concentrations in fresh surface water, groundwater, drinking water and precipitation are presented in Table C.2 to C.5 respectively. Tremblay and Gobeil (1990) noted that arsenic concentrations increased with increasing salinity.

Location	Description	Concentration	References
Ontario	Mean levels in raw lake water from 90 sampling pts for 82 Ontario water works	range: nd to 10 μg/L mean: 0.89 μg/L	Clubb, 2005, pers. comm.
Ontario	Mean levels in raw river water from 51 sampling pts for 46 Ontario water works	range: nd to 21.7 μg/L mean: 0.72 μg/L	Clubb, 2005, pers. comm.
Lake Superior	47 water samples	range: <0.1 to 1.0 μg/L mean: 0.23 μg/L	Traversy et al., 1975
Lake Huron	91 water samples	range: 0.1 to 0.8 µg/L mean: 0.44 µg/L	Traversy et al., 1975
Georgian Bay	64 water samples	range: <0.1 to 0.7 μg/L mean: 0.35 μg/L	Traversy et al., 1975
Lake Erie	17 water samples	range: <0.1 to 0.6 μg/L mean: 0.25 μg/L	Traversy et al., 1975
Lake Ontario	24 water samples	range: 0.6 to 1.2 μg/L mean: 0.91 μg/L	Traversy et al., 1975
Great Lakes Basin Rivers	108 water samples	range: <0.1 to 1.4 µg/L mean: 0.26 µg/L	Traversy et al., 1975
St. Mary's River	160 water samples	range: <0.1 to 1.0 µg/L mean: 0.37 µg/L	Traversy et al., 1975
St. Lawrence River	132 water samples	range: <0.1 to 1.0 µg/L mean: 0.61 µg/L	Traversy et al., 1975
Moira Lake, Ontario	sampled from 1987 to 1988; past mining activity in area	range: 4 to 94 μg/L mean: 43 μg/L	Azcue et al., 1994
St. Lawrence Estuary	samples taken at various locations ^a	range: 0.5 to 1.4 µg/L	Tremblay and Gobeil, 1990
Saguenay Fjord	samples taken at various locations ^a	range: 0.1 to 1.4 µg/L	Tremblay and Gobeil, 1990
Bowron Lake, British Columbia	samples taken in 1992; reference lake with no nearby mining activity	range: <0.2 to 0.42 μg/L mean: 0.26	Azcue et al., 1994
British Columbia	samples taken in 1992 from a lake near an abandoned gold mine	range: <0.2 to 0.3 μg/L mean: 0.25	Azcue et al., 1994
Various Lakes, NWT	sampled in 1975; near gold mining activity	range: 700 to 5,500 µg/L	Wagemann et al., 1978
Various subarctic lakes	sampled in 1991; near gold mining activity	range: 64 to 530 µg/L mean: 270 µg/L	Bright et al., 1996

Table C.2Ontario and Canadian Background Arsenic Concentrations in Fresh Surface
Water

Location	Description	Concentration	References	
^a Samples of varying salinity (0 to 31 g/L) showed As increasing with salinity.				

Table C.3 Ontario and Canadian Background Arsenic Concentrations in Groundwater

Location	Description	Concentration	References
Ontario	Mean levels in raw ground water from 61 sampling pts for 55 Ontario water works	range: nd to 10.1 μg/L mean: 0.79 μg/L	Clubb, 2005 pers. comm.
Ontario	Background Site Condition Standard ^a	25 μg/L	MOE, 2004
Southeastern Ontario	survey of shallow groundwater supplies	<50 μg/L	Michel, 1990
Saskatchewan	study of well water supplies	>20 μ g/L in 13% of samples ^b >100 μ g/L in one sample	Thompson et al., 1999

^a The value selected for the Standard is within the range of measured groundwater data from the 1998 Drinking Water Surveillance Program, and is considered generally achievable in site situations typical of background.

^b Wells with high arsenic levels were geographically near to one another.

Table C.4Onta	rio and Canadian Ba	ackground Arsenic	Concentrations in	Drinking Water
---------------	---------------------	-------------------	--------------------------	----------------

Location	Description	Concentration	References
Ontario	Mean levels in drinking water from 89 sampling pts in the distribution systems of 54 Ontario water works drawing groundwater	range: nd to 15 µg/L mean: 0.73 µg/L	Clubb, 2005 pers. comm.
Ontario	Mean levels in drinking water from 82 sampling pts in the distribution systems of 160 Ontario water works drawing lake water	range: nd to 9.5 µg/L mean: 0.68 µg/L	Clubb, 2005 pers. comm.
Ontario	Mean levels in drinking water from 90 sampling pts in the distribution systems of 50 Ontario water works drawing river water	range: nd to 8.3 µg/L mean: 0.45 µg/L	Clubb, 2005 pers. comm.
Canada	Ontario drinking water supplies	<5 μg/L	Subramanian and Méranger, 1984; OME, 1989
Canada	Domestic and imported bottled water samples from across Canada	range: <1 to 48 μg/L mean: 3 μg/L	Dabeka <i>et al.</i> , 1992

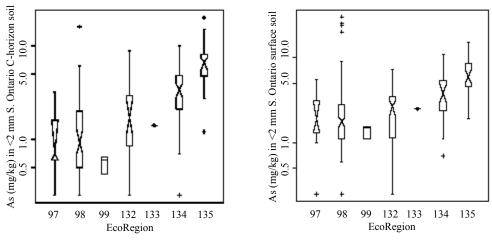


Table C.5	Ontario and Canadian Background Arsenic Concentrations in Precipitation			
Location	Description Concentration		References	
Various locations	53 rainwater samples throughout Great Lakes Basin	range: <0.1 to 2.5 μg/L mean: 0.72 μg/L	Traversy et al., 1975	
Toronto, Etobicoke, Oakville, North York, Kingston, Ont.	Fresh snow samples (particulate matter); filtered snow samples from 1983 to 1984	fresh snow range: 10 to 50 μg/L filtered snow range: 15 to 50 μg/L	Brzezinska-Paudyn <i>et al.,</i> 1986	

C-1.2.3 Background Concentrations in Soils and Sediment

Background concentrations of arsenic in soil are typically 1 to 40 μ g/g (mean of 5 μ g/g) (Beyer and Cromartie, 1987; Eckel and Langlery, 1988; U.S. EPA, 1982a; NAS, 1977). Generally, soils of granitic origins are low in arsenic (approximately 4 μ g/g), while soils of sedimentary origins may be as high as 20-30 μ g/g (Yan-Chu, 1994). Table C.6 summarizes background concentrations of arsenic in Canadian soils. Concentrations of arsenic in soils from across Southern Ontario are plotted in Figure C-1, where the extent of the whiskers provides an estimate of background range for each EcoRegion that is not affected by outliers (+ near outlier; o far outlier) due to natural or anthropogenic processes (Garrett, 2005).

EcoRegions:

- 97 Lake Timiskaming Lowland, n = 17
- 98 Algonquin-Lake Nipissing (includes Sudbury region), n = 112 134 135
- 99 Southern Laurentians, n = 3
- 132 St. Lawrence Lowlands, n = 30

Frontenac Axis, n = 1Manitoulin-Lake Simcoe, n = 89Lake Erie Lowlands, n = 42

Figure C-1 Tukey Boxplots, by EcoRegion in Southern Ontario, of Arsenic in C-horizon (70 to 100 cm) and Surface (top 25 cm) Soils

133

Location	Description	Concentration	References
Ontario	typical range surface soil concentrations	14 mg/kg (agricultural land use) 17 mg/kg (all other land uses)	MOEE, 1994
Canada	uncontaminated soils across Canada	range: 4.8 to 13.6 mg/kg <10 mg/kg (average urban and agricultural concentrations) ^a	Kabata-Pendias and Pendias 1992 Environment Canada, 1996
Ottawa	garden soil, n = 50, collected winter 1993 from 10 Ottawa neighbourhoods	2.99 mg/kg	Rasmussen et al., 2001
Ontario	Ontario Typical Range ^b - old urban parkland	OTR: ~1 to 60 mg/kg mean: ~ 5 mg/kg OTR ₉₈ : 11 mg/kg	MOEE, 1994
Ontario	Ontario Typical Range ^b - rural parkland	OTR: ~1 to 30 mg/kg mean: 5.7 mg/kg OTR ₉₈ : 17 mg/kg	MOEE, 1994
Ontario	upper-limit of background ^c	14 to 17 mg/kg	MOE, 2004
Ontario	uncontaminated agricultural soils	range: 1.1 to 16.7 mg/kg	Frank <i>et al.</i> , 1976
South- western Ontario	untreated agricultural soils	range: 1.1 to 8.6 mg/kg	Miles, 1968
Canada	uncontaminated soil	<15 mg/kg usually average: 7 mg/kg	NRCC, 1978
Ontario	uncontaminated soils	range: 1.1 to 8.6 mg/kg	Walsh and Keeney, 1975
Southern Ontario	urban area; top 5 cm of soil; 1974	range: 2.7 to 41 mg/kg mean: 9.8 mg/kg	Temple et al., 1977
Southern Ontario	<700 m from secondary lead smelter; top 5 cm of soil; 1974	range: 4.7 to 2,000 mg/kg mean: 107 mg/kg	Temple <i>et al.</i> , 1977
Toronto	near secondary lead smelter; top 1 cm of soil	range of means: 17.9 to 3,007 mg/kg	Dolan <i>et al.</i> , 1990
Manitoba	surface peat soils sampled 1982-84	range: 1 to 19.6 mg/kg mean: 4 mg/kg	Zoltai, 1988
Alberta	acid sulphate soil, soil horizons E-C	range: 1.5 to 45 mg/kg	Dudas, 1984

Table C.6	Ontario and Canadian Background Arsenic Concentrations in Soil
	Ontai to and Canadian Dacker ound Anseme Concentrations in Son

^a Environment Canada (1996) reports that most urban and agricultural soil concentrations are in the 4 to 6 mg/kg range.

^b Ontario Typical Ranges (OTRs) represent the expected range of concentrations of contaminants in surface soil from areas in Ontario not subjected to the influence of known point sources of emissions. The OTR₉₈ represents an upper limit of normal. OTR and mean values were estimated from graphs. These values apply to the land use and soil type in Ontario for which they were developed. The soil type is all soils except loamy sand, sand and soils with organic carbon content >17%.

^c Value was derived from the Ontario Typical Range values and is representative of the upper limits of typical provincewide background concentrations in soils that are not contaminated by point sources.

The U.S. EPA (2003) compiled mean background concentrations of arsenic in soil for each state, and reported values ranging from 1.4 μ g/g in Delaware to 16 μ g/g in Tennessee. Generic background concentrations of arsenic in soil based on soil type were compiled by Kabata-Pendias and Pendias (1985) and are presented as generic values that may be applied to any area of the U.S. (RAIS, 2004) (see Table C.7).

(Kadata-Pendias and Pendias, 1985)			
Soil Type	Range (ppm)	Mean (ppm)	
Alluvial soils	2.1 to 22.0	8.2	
Chernozems and dark prairie soils	1.9 to 23	8.8	
Clay and clay-loamy soils	1.7 to 27.0	7.7	
Forest soils	1.5 to 16.0	6.5	
Lateritic soils			
Light desert soils	1.2 to 18.0	6.4	
Light loamy soils	0.4 to 31.0	7.3	
Loess and soils on silt deposits	1.9 to 16.0	6.6	
Low Humic Gley soils and humus groundwater podzols			
Organic light (or rich) soils	<0.1 to 48.0	5.0	
Sandy and lithosols on sandstone			
Silty prairie soils	2.0 to 12.0	5.6	
Soils on glacial till and drift	2.1 to 12.0	6.7	
Soils on lacustrine deposits			
Soils over granites and gneisses	0.7 to 15.0	3.6	
Soils over limestones and calcareous rocks	1.5 to 21.0	7.8	
Soils over volcanic rocks (or ash)			
Various soils	1.0 to 93.2	7.0	
Western Alluvial soils			

Table C.7Generic Background Concentrations of Arsenic in Soil by Soil Type
(Kabata-Pendias and Pendias, 1985)

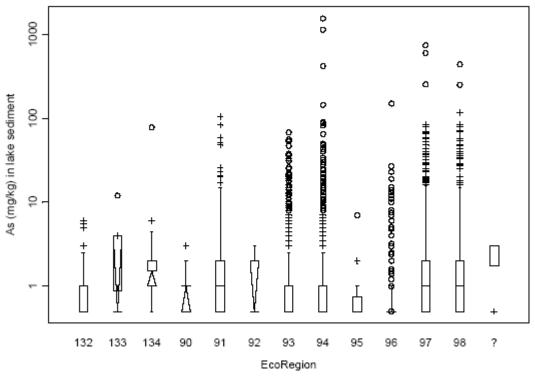

Table C.8 summarizes background concentrations of arsenic in dust.

Table C.8	Ontario and Canadian Background Arsenic Concentrations in Dust
	Ontai to and Canadian Dackground Arsenic Concentrations in Dust

Location	Description	Concentration	References
Ottawa	housedust, n = 50, collected winter 1993 from 10 Ottawa neighbourhoods	4.9 mg/kg	Rasmussen et al., 2001
Ottawa	street dust, n = 50, collected winter 1993 from 10 Ottawa neighbourhoods	1.0 mg/kg	Rasmussen et al., 2001
Halifax, Nova Scotia	street dusts; 2 samples	range: 5.9 to 8.9 mg/kg	Fergusson and Ryan, 1984

An estimated upper limit for arsenic levels in lake sediment from non-mineralized background areas is approximately 10 to 15 mg/kg (Garrett, 2005). A plot of concentrations of arsenic in lake sediments is presented in Figure C-2 below, where the extent of the whiskers provides an estimate of background range for each EcoRegion that is not affected by outliers (+ near outlier; o far outlier) due to natural or anthropogenic processes. However the extent does underestimate the full range of natural background when mineral occurrences are present in the region (Garrett, 2005). Table C.9 summarizes background concentrations of arsenic in sediment.

EcoRegions:

- Lac Seul Upland, n = 4190
- Lake of the Woods, n = 2,11891
- Rainy River, n = 2992
- 93 Thunder Bay-Quetico, n = 1,483
- 94 Lake Nipigon, n = 3,003
- Big Trout Lake, n = 2795
- 96 Abitibi Plains, n = 2.045
- 97 Lake Timiskaming Lowland, n = 5,065
- 98 Algonquin-Lake Nipissing (includes Sudbury region), n = 4,279
- St. Lawrence Lowlands, n = 71132
- 133 Frontenac Axis, n = 10
- 134 Manitoulin-Lake Simcoe, n = 128?
 - Unclassified, n = 3

Figure C-2 Tukey Boxplots, by EcoRegion in Ontario, of Arsenic in Sediment from Deep Centre-lake Basins, below the Surface Gyttja

Table C.9	Ontario and Canadian Background Arsenic Concentrations in Sediments			
Location	Description	Concentration	References	
Lake Ontario	surficial sediments sampled in 1998	range: non-detect to 47.2 mg/kg	Marvin <i>et al.</i> , 2003	
Lake Ontario	pre-colonial background from deep sediments	<5 mg/kg	Marvin et al., 2003	
Ontario	upper limit of normal for lake sediment from non-mineralized background areas	10 to 15 mg/kg	Garrett, 2005	
Lake Erie	surficial sediments, sampled in 1997-98	range: non-detect to 18.6 mg/kg	Painter et al., 2001	
Lake Erie, West Basin	pre-colonial background from deep sediments	5.8 mg/kg	Painter et al., 2001	
Lake Erie, Centre Basin	pre-colonial background from deep sediments	7.1 mg/kg	Painter et al., 2001	
Lake Erie, East Basin	pre-colonial background from deep sediments	6.8 mg/kg	Painter et al., 2001	
Ontario	Background Site Condition Standard ^a	6 mg/kg	MOE, 2004	
Lake Superior	15 sediment samples	range: 0.5 to 8.0 mg/kg mean: 2.03 mg/kg	Traversy et al., 1975	
Lake Huron	10 sediment samples	range: 0.8 to 4.5 mg/kg mean: 2.33 mg/kg	Traversy et al., 1975	
Lake Erie	10 sediment samples	range: 2.0 to 5.5 mg/kg mean: 3.2 mg/kg	Traversy et al., 1975	
Lake Ontario	8 sediment samples	range: 1.5 to 14 mg/kg mean: 4.1 mg/kg	Traversy et al., 1975	
Lake Superior	north shore surficial sediments	<20 mg/kg	Friske, 1985	
Ontario lakes	14 lakes sampled in Ontario	<20 mg/kg	Johnson, 1987	
NWT lakes	lake sediments impacted by gold mining	<3,500 mg/kg	Wagemann et al., 1978	
Various subarctic lakes	lake sediment impacted by gold mining	range: 1,043 to 3,090 mg/kg mean: 1,716 mg/kg ^b	Bright et al., 1996	
Bowron Lake, British Columbia	reference lake sampled in 1992	range: 16 to 23 mg/kg mean: 19 mg/kg	Azcue et al., 1994	
British Columbia	sediment from gold mining impacted lake	range: 80 to 1,104 mg/kg mean: 382 mg/kg	Azcue et al., 1994	

Table C.9	Ontario and Canadian Background Arsenic Concentrations in Sediments
-----------	---

a Value is within the range of measured background sediment in the 1993 Sediment Guidelines.

b Samples were taken from the top 10 cm of sediment. Total dissolved arsenic levels in porewater ranged from 800 to 5,170 μg/L (0.7% organic arsenic).

C-1.2.4 Background Concentrations in Biota and Foods

Background concentrations of arsenic in living organisms are generally $<1 \mu g/g$ wet weight (Eisler, 1994). Tables C.10 through C.11 summarize background concentrations in Canadian fish (freshwater), biota.

Table C.10	Ontario and Canadian Background Arsenic Concentrations in Biota			
Location	Description	Concentration	References	
Lake Erie	31 freshwater fish sampled	range: 0.03 to 0.12 mg/kg ww mean: 0.07 mg/kg ww	Traversy et al., 1975	
Lake Ontario	12 freshwater fish sampled	range: 0.04 to 0.1 mg/kg ww mean: 0.07 mg/kg ww	Traversy et al., 1975	
Remote areas	freshwater fish uncontaminated water bodies	typical range: <0.1 to 0.4 mg/kg ww	Moore and Ramamoorthy, 1984	
St. Lawrence River	mussels	2.8 to 8.6 mg/kg, dry weight	Metcalfe-Smith, 1994	
NWT	zooplankton from lake impacted by gold mining	700 to 2,400 mg/kg	Wagemann et al., 1978	
Remote areas	aquatic plants - uncontaminated water bodies	typical: <10 mg/kg dry weight	Moore and Ramamoorthy, 1984	
Lake Ontario watershed	aquatic plants -area contaminated with mine effluent	<1,200 mg/kg dry weight	Mudroch and Capobianco, 1979	
NWT	aquatic plants -lake historically impacted by gold mining	150 to 3,700 mg/kg	Wagemann et al., 1978	
Northern Quebec	hares and martins (muscle tissue)	< 0.05 mg/kg	Langlois and Langlis, 1995	
Canadian Arctic	polar bears (liver tissue)	0.07 mg/kg dry weight	Nostrom et al., 1986	
Northern Canada	Sphagnum fuscum moss (various un-impacted sites)	mean background: 0.66 mg/kg dry weight	Glooschenko and Arafat, 1988	
Northern Canada	Sphagnum fuscum moss (various mining and smelting areas)	>3 to 31 mg/kg dry weight	Glooschenko and Arafat, 1988	
Southern Ontario	Grass (urban site < 700 m from a secondary lead smelter)	5.8 mg/kg	Temple <i>et al.</i> , 1977	
Southern Ontario	tree and shrub foliage (urban site < 700 m from a secondary lead smelter)	7.4 mg/kg	Temple <i>et al.</i> , 1977	
Southern Ontario	plant samples (urban control site	<1 mg/kg	Temple et al., 1977	

Table C.10	Ontario and Canadian Background Arsenic Concentrations in Biota
------------	---

Table C.11 summarizes background As concentrations in Canadian foods sampled from typical points-ofpurchase (e.g., grocery store).

Food Type	Location	Description	Concentration (ng/g ww)	Reference
Fish and seafood				
Fish and shellfish	Port Colborne	186 food samples ^{c,d}	mean: 1,600	JWEL, 2004
Fish and shellfish	6 Canadian cities btw 1985 and 1988	total arsenic in samples collected ^b	mean: 1662.46 max: 4830.0	Dabeka <i>et al.</i> 1993
Marine fish	Canada	marine fish sold for human consumption	range: 400 to 118,000	DNHW, 1983
Fish (saltwater)	Ontario	total arsenic concentrations and % inorganic	1100 to 4000 (1% inorganic) average: 2550 ^a	OME, 1987
Fish (freshwater)	Ontario	total arsenic concentrations and % inorganic	140 (15% inorganic) ^a	OME, 1987
Shrimp	Ontario	total arsenic concentrations and % inorganic	650 (16% inorganic) ^a	OME, 1987
Meat / poultry pr	oducts			
Meat, Poultry and eggs	Port Colborne	186 food samples	mean: 30.6 max: 43	JWEL, 2004
Meat and poultry	Canada, btw 1985 and 1988	total arsenic in samples collected ^b	mean: 24.3 max: 536.0	Dabeka <i>et al.</i> 1993
Meat and poultry	Canada	sold for human consumption	range: non-detect to 440	DNHW, 1983
Red meat	Ontario	total arsenic concentrations and % inorganic	13 to 26 (100% inorganic) ^a	OME, 1987
Poultry	Ontario	total arsenic concentrations and % inorganic	21 to 23 (41% inorganic) ^a	OME, 1987
Meats	Canada, Ottawa-Hull area	food purchased	50	Smith, 1971
Milk and dairy p	roducts			
Milk and milk Products	Port Colborne	186 food samples	mean: 21 max: 24	JWEL, 2004
Vanilla ice cream	Ontario	total arsenic concentrations and % inorganic	16 (26% inorganic) ^a	OME, 1987
Milk and dairy products	6 Canadian cities, btw 1985 and 1988	total arsenic in samples collected ^b	mean: 3.8 max: 26.0	Dabeka <i>et al.</i> 1993
Dairy	Canada, Ottawa-Hull area	food purchased	200	Smith, 1971

Table C.11 Typical Total Arsenic Concentrations in Canadian Foods

Food Type	Location	Description	Concentration (ng/g ww)	Reference
Rice	•	•		•
Cooked rice	Ontario	total arsenic concentrations and % inorganic	230 to 240 (43% inorganic) ^a	OME, 1987
Rice cereal, dry	6 Canadian cities, btw 1985 and 1988	total arsenic in samples collected ^b	mean: 284.1 max: 365	Dabeka <i>et al.</i> 1993
Cereals, grains a	nd baked goods			
Cereals, grains and baked goods	Port Colborne	186 food samples	mean: 18.5 max: 28	JWEL, 2004
Cereals and baked goods	6 Canadian cities, btw 1985 and 1988	total arsenic in samples collected ^b	mean: 24.5 max: 365	Dabeka <i>et al.</i> 1993
Cereals	Ontario	total arsenic concentrations and % inorganic	230 to 300 (49% inorganic) ^a	OME, 1987
Bread	Ontario	total arsenic concentrations and % inorganic	mean: 24 (50% inorganic) ^a	OME, 1987
Pastry flour	Ontario	total arsenic concentrations and % inorganic	11 (69% inorganic) ^a	OME, 1987
Cereals	Canada; Ottawa-Hull area	food purchased	50	Smith, 1971
Fruits and fruit j	uices			
Fruits and fruit Juices	Port Colborne	186 food samples	mean: 14.9 max: 37	JWEL, 2004
Fruit and fruit juices	6 Canadian cities, btw 1985 and 1988	total arsenic in samples collected ^b	mean: 4.5 max: 37	Dabeka <i>et al.</i> 1993
Apple juice	Ontario	total arsenic concentrations and % inorganic	12 (73% inorganic) ^a	OME, 1987
Garden fruits	Canada, Ottawa-Hull area	food purchased	20	Smith, 1971
Fruits	Canada, Ottawa-Hull area	food purchased	<100	Smith, 1971
Root vegetables				
Potatoes	Port Colborne	186 food samples	mean: 18.5	JWEL, 2004

Food Type	Location	Description	Concentration (ng/g ww)	Reference
Root vegetables	6 Canadian cities, btw 1985 and 1988	total arsenic in samples collected ^b	mean: 7.8	Dabeka <i>et al.</i> , 1993
Root vegetables	Canada, Ottawa-Hull area	food purchased	<20	Smith, 1971
Potatoes	Canada, Ottawa-Hull area	food purchased	<100	Smith, 1971
Other vegetables				
Other vegetables	Port Colborne	186 food samples	mean: 1.16 max: 2.7	JWEL, 2004
Vegetables	6 Canadian cities, btw 1985 and 1988	total arsenic in samples collected ^b	mean: 7.0 max: 84.0	Dabeka <i>et al.</i> , 1993
Leafy vegetables	Canada, Ottawa-Hull area	food purchased	<100	Smith, 1971
Legumes	Canada, Ottawa-Hull area	food purchased	<20	Smith, 1971
Fats and oils				
Fats, oils, nuts and Seeds	Port Colborne	186 food samples	mean: 38.5 max: 54	JWEL, 2004
Fats and oils	6 Canadian cities, btw 1985 and 1988	total arsenic in samples collected ^b	mean: 19.0 max: 57.0	Dabeka <i>et al.</i> , 1993
Sugars and sweet	s	,		
Sugars and sweets	Port Colborne	186 food samples	mean: 35.7 max: 48	JWEL, 2004
Sugar and candies	6 Canadian cities, btw 1985 and 1988	total arsenic in samples collected ^b	mean: 10.9 max: 105	Dabeka <i>et al.</i> , 1993
Sugar products	Canada, Ottawa-Hull area	food purchased	80	Smith, 1971
Miscellaneous				
Miscellaneous	6 Canadian cities, btw 1985 and 1988	total arsenic in samples collected ^b	mean: 12.5 max: 41.0	Dabeka <i>et al.</i> , 1993
Beverages	,			
Alcoholic beverages	Port Colborne	186 food samples	mean: 6.9	JWEL, 2004

Table C 11 nical Tatal A nic C trati in C dia Т F boo

Tuble C.11 Typical Total Arsenic Concentrations in Canadian Foods				
Food Type	Location	Description	Concentration (ng/g ww)	Reference
Non-alcoholic beverages	Port Colborne	186 food samples	mean: 9.7	JWEL, 2004
Beverages	6 Canadian cities, btw 1985 and 1988	total arsenic in samples collected ^b	mean: 3.0 max: 9.0	Dabeka <i>et al.</i> , 1993
Tea	Ontario	total arsenic concentrations and % inorganic	35 (26% inorganic) ^a	OME, 1987
Drinks	Canada, Ottawa-Hull area	food purchased	20	Smith, 1971

Table C.11 Typical Total Arsenic Concentrations in Canadian Foods

^a All food samples in this study were comprised of one homogenized sample, analyzed in duplicate or triplicate, except for saltwater fish and apple juice. Percent inorganic arsenic was calculated by dividing measured average inorganic concentration in foods by the average measured total arsenic concentration.

^b All food samples in this study were prepared as for normal consumption and then homogenized.

^c Includes replicates and duplicates

^d 97% of all food data is below the MDL (50 ng/g dw). All food items analyzed as dry weight and then converted to wet weight using moisture content (measured by laboratory). Samples detected at, or below, the MDL were assumed to be ½ the detection limit.

C-1.3 Estimated Canadian Daily Intakes

C-1.3.1 Dietary Intake

Utilizing age and sex-specific food consumption rate data for 112 food categories representative of the Canadian diet, Yost *et al.*, (1998) took the percentage of inorganic arsenic in the foods analyzed by OME (1987) and multiplied by the corresponding food concentrations reported by Dabeka *et al.*, (1993) to estimate total Canadian dietary intake of inorganic arsenic for three age/sex classes: (children ages 1 to 4; women ages 20 to 39; men ages 20 to 39). Consumption data were provided by the Nutrition Canada Survey of Department of Health and Welfare, Canada (Yost *et al.*, 1998). The total daily dietary intake of inorganic arsenic for these three classes was 4.8, 8.1, and 12.7 μ g/day, respectively (Yost *et al.*, 1998). The average daily intake for all classes combined was 8.3 μ g/day. Based on their analysis of the OME (1987) data, the authors concluded that as much as 21 to 40% of total dietary arsenic is present as the soluble inorganic forms. This suggests that dietary intake of inorganic arsenic may be higher than previously believed (Yost *et al.*, 1998).

Dabeka et al., (1993) had previously estimated daily Canadian dietary intakes for total arsenic, averaged over six Canadian cities, to range from 14.9 µg/day (F and M children aged 1 to 4), 29.9 µg/day (F and M children aged 5 to 11), 31.7 and 40.9 µg/day (12 to 19 yr old F and M, respectively), 34.1 and 59.2 µg/day (20-39 yr old F and M, respectively), 52.8 and 43 µg/day (40 to 65 yr old F and M, respectively), and 25.8 and 35.7 µg/day (>65 yr old F and M, respectively). The overall average estimated daily dietary intake for the entire Canadian population was 38.1µg/day. An earlier estimate of daily arsenic intake from food was reported to range from 2.6 to 101µg/day for total arsenic in adults, with an average intake of 16.7 µg/day (Dabeka et al., 1987). However, this study was based on limited data and only estimated daily arsenic intake for male and female adults. The data from Dabeka et al., (1987) as well as 1980s or earlier data from other countries was previously used to estimate the daily intake of inorganic arsenic from food (GCDWQ, 1996); a dietary EDI of approximately 10.5 µg/day was estimated. Despite the limitations of the data used to derive this estimate, it is in agreement with the average daily inorganic arsenic intake for all age classes recently estimated by Yost et al., (1998) to be 8.3 µg/day. The estimated chronic daily intake of 11 µg/day from a typical Ontario background diet (Fleming and Kuja, 1998) is also in close agreement with the estimates of Yost et al., (1998), and GCDWQ (1996). Table C.12 summarized the studies on dietary intake rates of As.

Breast fed infants generally do not consume large quantities of fish and seafood, the major source of dietary arsenic exposure for the general population, and Grandjean et al. (1995) found no major transfer of arsenobetaine, the main form of arsenic in fish and seafood, from mothers who are heavy fish and seafood consumers to breast milk.

Table C.12Dietary Intake Rates for Arsenic					
Species	Intake Rate	Comments	Reference		
Total As	1 to 4 yr: 14.9 μg/day 5 to 11 yr: 29.9 μg/day 12 to 19 M: 40.9 μg/day 20 to 39 M: 59.2 μg/day 40 to 65 M: 43.0 μg/day >65 M: 35.7 μg/day 12 to 19 F: 31.7 μg/day 20 to 39 F: 34.1 μg/day 40 to 65 F: 52.8 μg/day >65 F: 25.8 μg/day	total dietary As intake rates based on 1985 to 1988 concentrations in foods	Dabeka <i>et al.</i> , 1993		
Total As	16.7 μg/d, or 0.26 μg/kg/d	total dietary As intake by Canadians, based on duplicate diets collected in 1981 from 24 adults in 5 cities	Dabeka <i>et al.</i> , 1987		

SA1	RΔ
011	GROUP

Species	Intake Rate	Comments	Reference
Total As	infant: 21.5 μg/day preschool child:27.6 μg/day adult: 52.6 μg/day	total dietary As intake rates; based on FDA 1992 Total Diet Survey	Borum and Abernathy, 1994
Inorganic As	preschool child: 4.8 μg/day women (20-39): 8.1 μg/d men (20-39): 12.7 μg/day	dietary intake of inorganic As by Canadians, based on limited speciation data, and total As data in Dabeka <i>et al.</i> , 1993	Yost <i>et al.</i> , 1998
Inorganic As	adult: 10.9 to 14 µg/day	based on FDA 1992 Total Diet Survey and info on % inorganic As in foods from Weiler (1987)	Borum and Abernathy, 1994
Total As	<0.02 to 2.4 µg/kg body weight/day	for all age groups	CEPA, 1993
Inorganic As	<0.02 to 2.0 µg/kg body weight/day	for all age groups	CEPA, 1993

 Table C.12
 Dietary Intake Rates for Arsenic

C-1.3.2 Relative Contributions of Exposure Pathways to Total Exposure

Soluble inorganic As(III) and As(V) species are the most bioavailable and toxicologically significant arsenic species to humans. Organic arsenic species are rapidly metabolized and eliminated by the body and are generally of low toxicity to humans (Le *et al.*, 1993; 1994). Humans may be exposed to inorganic arsenic in ambient air, drinking water, soil, and food. Ingestion of inorganic arsenic in food and drinking water constitute the main exposure pathways for the general population (CCME, 1997; CEPA, 1993). In infants and small children, ingestion of dirt is a more important route of exposure to inorganic arsenic than drinking water (CEPA, 1993).

The total average daily intake of inorganic arsenic by Canadians from all environmental sources (uncontaminated areas) was estimated to range from 0.1 to 2.6 μ g/kg body weight/day, with the greatest exposure occurring in infants and young children (CEPA, 1993). The total EDI values, in μ g/kg body weight/day for all age classes assessed in CEPA (1993) were 0.1 to 2.6 (0 to 5 yrs); 0.3 to 2.4 (0.5 to 4 yrs); 0.2 to 2.1 (5 to 11 yrs); 0.1 to 1.3 (12 to 19 yrs); and 0.1 to 0.7 (20 to 70 yrs). Cigarette smoking was estimated to contribute an additional 0.01 to 0.04 μ g/kg body weight/day in adolescents and adults (CEPA, 1993). It should be noted that these estimates were based on environmental data collected before 1991, and the assumption that 37% of the arsenic content of foods was inorganic. Thus, these estimates

may change slightly if the recent daily Canadian dietary intakes of inorganic arsenic and estimates of inorganic arsenic content from Yost *et al.* (1998) as well as environmental concentrations specific to Ontario, were to be incorporated into the calculations used in CEPA (1993).

U.S. data indicate that food exposure contributes approximately 92.8% of the total arsenic exposure, while drinking water contributes 7% (Adams *et al.*, 1994). Of the food total arsenic exposure, roughly 90% is attributed to the consumption of seafood, and the remaining 10% to all other foods (Adams *et al.*, 1994). However, most arsenic in seafood is in an organic form, either as arsenobetaine or arsenocholine; thus the contribution to arsenic toxicity from seafood consumption is not directly related to consumption rates alone.

Drinking water exposure varies considerably depending on geological conditions, especially if groundwater is used as the raw drinking water source. Arsenic intakes from drinking water for typical adults average about 5 μ g/day (CEPA, 1993; U.S. EPA, 1982b). High levels of groundwater arsenic have been found to occur in a number of regions where bedrock arsenic content is elevated (*e.g.*, Boyle *et al.*, 1969; Brooks *et al.*, 1982; Bottomley, 1984; Méranger *et al.*, 1984a). In these areas, intake from drinking water may be as high as 10 to 100 μ g/day (ATSDR, 2000).

Soil and air exposures typically contribute only 0.01 and 0.2% of the total arsenic exposure, respectively (Adams *et al.*, 1994). Canadian data indicates that approximately 0.4 to 3% of the total daily exposure to inorganic arsenic is from soil/dust ingestion for all age classes, with infants and young children receiving as much as 4 to 9% of their total daily intake through this route (CCME, 1997; CEPA, 1993). Inhalation as an exposure route is insignificant for the general population, with the possible exception of smokers, who may incur as much as 10% of their total daily inorganic arsenic exposure from smoking (CCME, 1997; CEPA, 1993). However, a recent study failed to find increased levels of arsenic in the lungs of smokers *versus* non-smokers (Kraus *et al.*, 2000). Dermal exposure to arsenic *via* direct contact is minor due to the low dermal bioavailability of arsenic (U.S. EPA, 1984).

Meacher *et al.* (2002) estimated the daily inorganic arsenic intake of U.S. adults from food, water, soil ingestion and inhalation of airborne particles. The mean relative contributions to intake from food were 53.0 and 56.3% for females and males, respectively. Drinking water contributed 45.3 and 42.2%, for women and men respectively. Ingestion of soil contributed 1.3 and 1.1% for women and men, respectively. The contribution from inhalation exposure was 0.4% for both genders (Meacher *et al.*, 2002).

The Windsor Air Quality Study found the following breakdown of inhalation exposure to trace metals: 60% from indoor air in the home, 18% from air in the office, and 22% from outdoor air (exposure while commuting was not considered) (Bell *et al.*, 1994).

C-1.4 Indices of Human Exposure

Indices of chronic human arsenic exposure include measurements of the arsenic content of hair, urine, blood, and nails. Blood is not generally considered a reliable index as arsenic is rapidly cleared from the blood; therefore blood analysis is of little value in assessing human arsenic exposure and intoxication, except perhaps in the identification of arsenic as a cause of acute poisoning (Hindmarsh and McCurdy, 1986). Concentrations of arsenic in blood provide a record of only the previous few hours of exposure; therefore they are not suitable for use as a biomarker of exposure.

Urine analysis is considered a reliable index of recent (*i.e.*, one to three days) exposure only, due to the rapid and efficient excretion of arsenic in the urine (Hindmarsh and McCurdy, 1986). The determination of inorganic arsenic (iAs), MMA (V) and DMA in urine is the current method of choice for biological monitoring of workers exposed to inorganic arsenic, as this method is less influenced by organoarsenicals that are of marine origin (Lauwerys and Hoat, 2001). As the majority of arsenic elimination by the body occurs through the kidney, urinary arsenic concentrations are generally considered to be a valid biomarker of exposure. However, for poorly absorbed arsenic compounds, urinary levels will only mirror the amount absorbed and will not reflect the total intake (Gerhardsson and Skerving, 1996). Concentrations of arsenic in urine provide a record of the amount of arsenic absorbed over the previous one to three days; therefore, they can be used as a biomarker of recent exposure.

Data on arsenic concentrations in nails are limited; therefore, nail arsenic concentrations have not been validated as a reliable index of exposure. In addition, it is unclear whether nail arsenic reflects only internal exposure to arsenic, or if it reflects both external and internal exposure (Hindmarsh and McCurdy, 1986). Gerharrdsson and Skerving (1996) reported that there is a high potential for external contamination of nails, which limits the usefulness of nail analysis in biological exposure monitoring.

Some studies have found that hair arsenic is an unreliable index, due to difficulties in distinguishing internally acquired and externally deposited arsenic, and uncertainties about how arsenic in bloodstream enters hair (Young and Rice, 1944; Hindmarsh and McCurdy, 1986; Gerhardsson and Skerving, 1996). It has been suggested that ingested arsenic may enter hair *via* sweat and/or sebaceous secretions and remain attached to hair for the remainder of that hair's life (Hindmarsh and McCurdy, 1986). Regardless of

whether arsenic enters hair from the bloodstream or is deposited from the surrounding atmosphere, it tends to accumulate mostly on the outer surface of a hair. Although a number of studies have shown no clear relationship between hair arsenic levels and severity of toxicity (based on clinical manifestation), and environmental arsenic exposure, it has been concluded by some authors that hair arsenic levels can be reliably used as approximate indicators of chronic exposure and toxicity, providing that external arsenic contamination can be largely excluded (Hindmarsh and McCurdy, 1986). To date, exposure levels resulting in measurable increases in hair arsenic have not been defined, and there are presently no available critical limit values for arsenic (and other trace elements) in hair (Wilhelm and Idel, 1996). Therefore, hair analysis is considered by some to be suitable only as a screening tool for large populations where there is continuous exposure to arsenic *via* food and water (Wilhelm and Idel, 1996).

It should be noted that a number of factors can confound estimates of arsenic exposure, making it difficult to attribute particular sources of arsenic contamination to measured arsenic concentrations in human tissues or fluids. Key confounding variables reported in the literature include: age, seafood consumption, geographic region, tobacco smoking, drinking, occupation, and sex (Gebel *et al.*, 1998; Pollisar *et al.*, 1990; Arbouine and Wilson, 1992; Bencko, 1995). In particular, age and seafood consumption tend to correlate positively with urinary arsenic levels (Gebel *et al.*, 1998).

Table C.13 summarized background As concentration in human biological tissues and fluids.

	Fluids			
Tissue or Fluid Type	Location	Description	Concentration	References
Hair	not specified	normal hair concentration	0.25 to 0.88 µg/g	Benramdane <i>et al.</i> , 1999
Hair	not specified	nonoccupationally exposed individuals	<2 mg/kg	Valentine <i>et al.</i> , 1979
Hair	not specified	nonoccupationally exposed individuals	<1 mg/kg	Hewitt et al., 1995
Whole blood	U.S.	50 female non-smokers from uncontaminated areas	mean: 1.5 µg/L	Kagey et al., 1977
Blood	not specified	normal blood concentration	1.5 to 2.5 μg/L	Benramdane <i>et al.</i> , 1999
Blood	not specified	nonoccupationally exposed individuals	typical range: 1 to 4 µg/L	Bencko and Symon, 1977
Urine	Europe	normal concentrations	<10 µg/L	Gerhardsson and Skerving, 1996

Table C.13Background Arsenic Concentrations in Human Biological Tissues and
Fluids

Table C.13	Background Arsenic Concentrations in Human Biological Tissues and
	Fluids

Tissue or Fluid Type	Location	Description	Concentration	References
Urine	World-wide	expected range of values in an ostensibly unexposed population	<100 µg/L	WHO, 1980
Urine	U.S.	upper limit of background or normal concentrations	20 µg/L	ATSDR, 1997
Urine	not specified	normal urine concentration	20 to 50 μ g/L	Benramdane <i>et al.</i> , 1999
Urine	Japan	nonoccupationally exposed individuals	>50 µg/L	Yamato, 1988
Urine	Vietnam	Vietnamese urbanites (2 day abstinence from seafood prior to sampling)	$62.4\pm11.6~\mu\text{g/L}$	Dang <i>et al.</i> , 1999

C-2.0 COBALT BACKGROUND EXPOSURE

C-2.1 Sources and Environmental Fate

C-2.1.1 Sources

Cobalt occurs naturally in the earth's crust, and hence in soil, seawater and some surface and groundwaters (ATSDR, 2004a). Cobalt is released into the atmosphere by both natural and anthropogenic processes, with the amount released naturally slightly exceeding anthropogenic releases (ATSDR, 2004a). The natural sources of cobalt are windblown soil, seawater spray, marine biogenic emissions, volcanic eruptions and forest fires (ATSDR, 2004a). Human activities that release cobalt into the environment include fossil fuel and waste combustion, vehicular and aircraft exhausts, processing of cobalt and cobalt-containing alloys, copper and nickel smelting and refining, and the manufacture and use of cobalt chemicals and phosphate fertilizers (Barceloux, 1999a; Lantzy and Mackenzie, 1979; Nriagu, 1989; Smith and Carson, 1981). The radioactive forms of cobalt, ₆₀Co and ₅₈Co, may be released from nuclear activities (ATSDR, 2004a).

C-2.1.2 Environmental Fate and Speciation in Environmental Media

C-2.1.2.1 Atmosphere

Cobalt and its compounds are non-volatile, and are released to the atmosphere only in particulate form (ATSDR, 2004a). The principle form of emitted cobalt from combustion sources is thought to be the oxide, while arsenides and sulphides may be released from mining and ore processing (Schroeder *et al.*, 1987). It is not known whether cobalt undergoes any atmospheric transformations (ATSDR, 2004a). Cobalt released to air will be transferred to land or surface waters *via* wet or dry deposition at a distance from its point of release determined by its form, particle size and density, and meteorological conditions (ATSDR, 2004a). Coarse particles with aerodynamic diameters >2 μ m are generally deposited with 10 km of the point of emission, while smaller particles may travel longer distances (ATSDR, 2004a).

FINAL REPORT

C-2.1.2.2 Surface Water and Groundwater

Soluble cobalt may remain in solution and be transported in dissolved form with water currents, it may precipitate as carbonates and hydroxides or with mineral oxides, it may be absorbed to particles and sediment, or complexed with humic acids (ATSDR, 2004a). pH and other factors influence these processes, and at low pH the proportion of dissolved cobalt will be higher (ATSDR, 2004a). For many

metals movement of suspended solids is the chief mode of transport in aqueous systems; however, with cobalt this amount can vary greatly as cobalt is released to water (ATSDR, 2004a). There are conflicting models to predict the equilibrium levels of cobalt species in fresh water (*e.g.*, Mantoura *et al.*, 1978; Smith and Carson, 1981). Neither of these models seem to be generally accepted.

C-2.1.2.3 Soils and Sediments

Soils and sediments are sinks for cobalt as it is strongly adsorbed to metal oxides, crystalline minerals and organic matter; however, cobalt can be released from soils and sediments under certain conditions (ATSDR, 2004a). pH is an important factor affecting migration of cobalt between water and sediment; the proportion of dissolved cobalt is increased with decreased pH (ATSDR, 2004a). The mobility of cobalt in soil is inversely related to how strongly it is adsorbed by soil components (ATSDR, 2004a).

The speciation of cobalt in soil or sediment depends on the nature of the substrate, the concentration of chelating/complexing agents, pH, and redox potential of the soil (ATSDR, 2004a). Dissolved cobalt may be absorbed by ion exchange and other mechanisms, or may complex with fulvic acids, humic acids or other organic ligands (ATSDR, 2004a). Cobalt may be released from soils when they are flooded or when soil pH is decreased (ATSDR, 2004a). Bacterial activity can also affect the mobility of cobalt by mediating reactions or by lowering soil pH (ATSDR, 2004a).

C-2.1.2.4 Biota and Foods

Cobalt may be taken up from soil by plants, with a transfer coefficient generally between 0.01 and 0.3; but translocation of cobalt within the plant from roots to above ground parts is not significant in most soils (ATSDR, 2004a). Cobalt levels generally decrease with increasing trophic levels in a food chain (Smith and Carson, 1981). Cobalt is an essential element, and in order for the dietary requirements of grazing animals to be met, soils should contain greater than 3 mg/kg, yielding corresponding concentrations in plant tissues greater than 0.1 mg/kg (ATSDR, 2004a). Cobalt is subject to

bioaccumulation in aquatic and marine environments; however, cobalt in fish is largely concentrated on the skin and in viscera, as opposed to the edible parts of the fish (ATSDR, 2004a).

Cobalt is an essential nutrient and a component of vitamin B-12. However, vitamin B-12 constitutes only a very small fraction of cobalt intake and most ingested cobalt is in the inorganic form (ATSDR, 2004a). Cobalt is found in the highest concentrations in grains and vegetables, particularly, green leafy vegetables, with the lowest concentrations in dairy products, refined cereals and sugar (Barceloux, 1999a). Analysis conducted as part of the Canadian Total Diet Study found the highest concentrations of cobalt in the following food categories: grains and baked goods; fats, oils and nuts; and, sugar, candy and desserts (Dabeka and McKenzie, 2005 pers. comm.; HC, 2004a; Dabeka and McKenzie, 1995).

C-2.2 Background Exposure Concentrations in Ontario and Canada

C-2.2.1 Background Concentrations in Air

Reported background concentrations of cobalt in air are provided in Table C.14

Location	Description	Concentration	References
Canada (rural)	annual arithmetic means of PM2.5 samples from 38 urban stations across Canada, 1994 to 2004	range: nd to 0.00414 µg/m ³ mean: 0.000911 µg/m ³	Dann, 2005 pers. comm.
Canada (urban)	annual arithmetic means of PM2.5 samples from 8 rural stations across Canada, 1994 to 2004	range: nd to 0.00822 µg/m ³ mean: 0.000877 µg/m ³	Dann, 2005 pers. comm.
Canada	ambient levels at urban sites	range: 1 to 7.9 ng/m ³	Schroeder et al., 1987
British Columbia	mean from 3 stations between 1995 and 1998	mean: 0.0258 ng/m ³ range: 0 to 0.559 ng/m ³	Dryfhout-Clark, 2004

 Table C.14
 Ontario and Canadian Background Cobalt Concentrations in Air

C-2.2.2 Background Concentrations in Surface Water and Groundwater

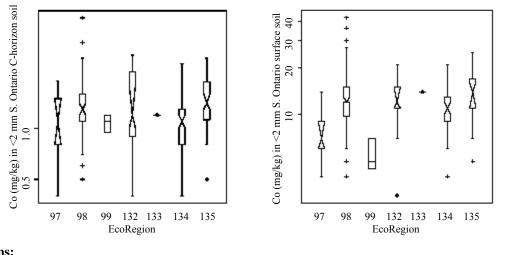
Reported background concentrations of cobalt in surface water, groundwater, drinking water and precipitation are provided in Tables C.15 to C.17, respectively. No data were found for background cobalt concentrations in rainwater.

Table C.15	Ontario and Canadian Background Cobalt Concentrations in Fresh Surface
	Water

Location	Description	Concentration	References
Ontario	Mean levels in raw lake water from 90 sampling pts for 82 Ontario water works	range: nd to 25.0 µg/L mean: 0.15 µg/L	Clubb, 2005 pers. comm.
Ontario	Mean levels in raw river water from 51 sampling pts for 46 Ontario water works	range: nd to 7.8 μg/L mean: 0.22 μg/L	Clubb, 2005 pers. comm.

Table C.16 Ontario and Canadian Background Cobalt Concentrations in Groundwater

Location	Description	Concentration	References			
Ontario	Mean levels in raw ground water from 61 range: nd to 8.2 µg/L		Clubb, 2005 pers. comm.			
Untario	sampling pts for 55 Ontario water works	mean: 0.17 μg/L	Clubb, 2003 pers. comm			
Ontario	Background Site Condition Standards ^a	MOE, 2004				
^a The value selected for the Standard is within the range of measured groundwater data from the 1998 Drinking Water						
Surveillanc	Surveillance Program, and is considered generally achievable in site situations typical of background.					


Table C.17 Ontario and Canadian Background Cobalt Concentrations in Drinking Water

Location	Description	Concentration	References
Ontario	Mean levels in drinking water from 89 sampling pts in the distribution systems of 54 Ontario water works drawing groundwater	range: nd to 6.2 μg/L mean: 0.16 μg/L	Clubb, 2005 pers. comm
Ontario	Mean levels in drinking water from 82 sampling pts in the distribution systems of 160 Ontario water works drawing lake water	range: nd to 9.0 µg/L mean: 0.13µg/L	Clubb, 2005 pers. comm.
Ontario	Mean levels in drinking water from 90 sampling pts in the distribution systems of 50 Ontario water works drawing river water	range: nd to 22.0 μg/L mean: 0.15 μg/L	Clubb, 2005 pers. comm.

C-2.2.3 Background Concentrations in Soils and Sediment

Concentrations of cobalt in soils from across Southern Ontario are plotted in Figure C-3, where the extent of the whiskers provides an estimate of background range for each EcoRegion that is not affected by outliers (+ near outlier; o far outlier) due to natural or anthropogenic processes (Garrett, 2005). Reported background concentrations of cobalt in soil and dust are provided in Tables C.18 and C.19, respectively.

EcoRegions:

- 97 Lake Timiskaming Lowland, n = 17
- 98 Algonquin-Lake Nipissing (includes Sudbury region), n = 112
- 99 Southern Laurentians, n = 3
- 132 St. Lawrence Lowlands, n = 30

- 133 Frontenac Axis, n = 1
- 134 Manitoulin-Lake Simcoe, n = 89
- 135 Lake Erie Lowlands, n = 42

Figure C-3 Tukey Boxplots, by EcoRegion in Southern Ontario, of Cobalt in C-horizon (70-100 cm) and Surface (top 25 cm) Soils

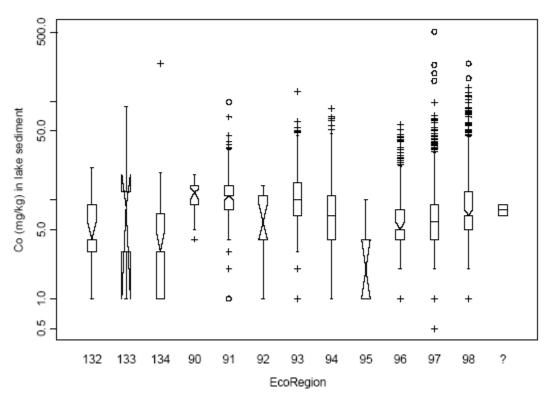
Location	Description	Concentration	References
Ottawa	garden soil, n=50, collected winter 1993 from 10 Ottawa neighbourhoods	8.18 mg/kg	Rasmussen et al., 2001
Ontario	upper-limit of background ^a	19 mg/kg (agricultural land use) 21 mg/kg (all other land uses)	MOE, 2004
Ontario	Ontario Typical Range ^b - old urban parkland	OTR: ~2 to 19 mg/kg mean: 7.6 mg/kg OTR ₉₈ : 17 mg/kg	MOEE, 1994
Ontario	Ontario Typical Range ^b - rural parkland	OTR: ~2 to 19 mg/kg mean: ~ 7 mg/kg OTR ₉₈ : 16 mg/kg	MOEE, 1994
Canada	uncultivated, uncontaminated soils, remote from ore bodies	range: 5 to 50 mg/kg mean: 21 mg/kg	McKeague and Wolynetz, 1980
Appalachians (Canada)	uncultivated, uncontaminated soils, remote from ore bodies, n=45	18 mg/kg	McKeague and Wolynetz, 1980
Canadian Shield	uncultivated, uncontaminated soils, remote from ore bodies, n=12	19 mg/kg	McKeague and Wolynetz, 1980
St. Lawrence Lowlands	uncultivated, uncontaminated soils, remote from ore bodies, n=40	24 mg/kg	McKeague and Wolynetz, 1980
Interior Plains (Canada)	uncultivated, uncontaminated soils, remote from ore bodies, n=34	15 mg/kg	McKeague and Wolynetz, 1980
Cordillerans (Canada)	uncultivated, uncontaminated soils, remote from ore bodies, n=19	34 mg/kg	McKeague and Wolynetz, 1980

Table C.18 Ontario and Canadian Background Cobalt Concentrations in Soil

^a Value was derived from the Ontario Typical Range values and is representative of the upper limits of typical province-wide background concentrations in soils that are not contaminated by point sources.

^b Ontario Typical Ranges (OTRs) represent the expected range of concentrations of contaminants in surface soil from areas in Ontario not subjected to the influence of known point sources of emissions. The OTR₉₈ represents an upper limit of normal. OTR and mean values were estimated from graphs. These values apply to the land use and soil type in Ontario for which they were developed. The soil type is all soils except loamy sand, sand and soils with organic carbon content >17%.

Table C.19Ontario and Canadian Background Cobalt Concentrations in Dust				
Location	Description	Concentration	References	
Ottawa	household dust, n=50, collected winter 1993 from 10 Ottawa neighbourhoods	8.40 mg/kg	Rasmussen et al., 2001	
Ottawa	street dust, n=50, collected winter 1993 from 10 Ottawa neighbourhoods	8.02 mg/kg	Rasmussen et al., 2001	


The U.S. EPA (2003) compiled mean background concentrations of cobalt in soil for each state, and reported values ranging from 1.6 mg/kg dry weight in Florida to 18 mg/kg dry weight in Washington. Generic background concentrations of cobalt in soil based on soil type were compiled by Kabata-Pendias and Pendias (1985) and are presented as generic values that may be applied to any area of the U.S. (RAIS, 2004) (see Table C.20).

(Kabata-Pendias and Pendias, 1985)		
Soil Type	Range (ppm)	Mean (ppm)
Alluvial soils	3 to 20	9.0
Chernozems and dark prairie soils	3 to 15	7.5
Clay and clay-loamy soils	3 to 30	8.0
Forest soils	5 to 20	10.0
Lateritic soils		
Light desert soils	3 to 20	10.0
Light loamy soils	3 to 30	7.5
Loess and soils on silt deposits	3 to 30	11.0
Low Humic Gley soils and humus groundwater podzols	0.3 to 3.1	1.0
Organic light (or rich) soils	3 to 10	6.0
Sandy and lithosols on sandstone		
Silty prairie soils	3 to 15	7.5
Soils on glacial till and drift	5 to 15	7.5
Soils on lacustrine deposits		
Soils over granites and gneisses	3 to 15	6.0
Soils over limestones and calcareous rocks	3 to 20	9.5
Soils over volcanic rocks (or ash)		
Various soils	3 to 50	10.5
Western Alluvial soils		

Table C.20Generic Background Concentrations of Cobalt in Soil by Soil Type
(Kabata-Pendias and Pendias, 1985)

An estimated upper limit for background variation in cobalt levels in lake sediment is approximately 40 mg/kg (Garrett, 2005). Concentrations of cobalt in lake sediments from across Southern Ontario are plotted in Figure C-4, where the extent of the whiskers provides an estimate of background range for each EcoRegion that is not affected by outliers (+ near outlier; o far outlier) due to natural or anthropogenic processes. However, the whiskers underestimate the full range of natural background when mineral occurrences are present in the region (Garrett, 2005). Reported background concentrations of cobalt in sediment are provided in Table C.21.

EcoRegions:

- Lac Seul Upland, n = 4190
- Lake of the Woods, n = 2,11891
- 92 Rainy River, n = 29
- Thunder Bay-Quetico, n = 1,48393
- 94 Lake Nipigon, n = 3,003
- 95 Big Trout Lake, n = 27
- 96 Abitibi Plains, n = 2,045
- 97 Lake Timiskaming Lowland, n = 5,065
- 98 Algonquin-Lake Nipissing (includes Sudbury region), n = 4,279
- 132 St. Lawrence Lowlands, n = 71
- 133 Frontenac Axis, n = 10
- 134 Manitoulin-Lake Simcoe, n = 128?
 - Unclassified, n = 3

Figure C-4 Tukey Boxplots, by EcoRegion in Ontario, of Cobalt in Sediment from Deep Centre-lake Basins, below the Surface Gyttja

Table C.21	Ontario and Canadian Background Cobalt Concentrations in Sediments					
Location	Description	ption Concentration References				
Ontario	Background Site Condition Standard ^a	50 mg/kg	MOE, 2004			
^a Value is withi	n the range of measured backgr	ound sediment in the 1993 Sec	liment Guidelines.			

C-2.2.4 Background Concentrations in Biota and Foods

No background concentrations of cobalt in fish, other aquatic biota, aquatic plants and terrestrial biota were found.

Reported background concentrations of cobalt in Canadian foods are provided in Table C.22.

Food Type	Location	Description	Concentration (ng/g ww)	Reference
Fish and seafood	-			
Fish and shellfish	Canada	unpublished data from the 2000 TDS	5.0 ^a	Dabeka and McKenzie, 2005 pers. comm
Fish and shellfish	8 Canadian cities: Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999	137 food items collected	mean: 7.69 max: 11.52	НС, 2004а
Fish and Shellfish	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 3.2 ^a	JWEL, 2004
Fish	Canada, Montreal between 1986 and 1988	6 samples purchased	mean: 19.9 max: 29.4	Dabeka and McKenzie, 1995
Meat / poultry pro	oducts	i-		
Meat, poultry and eggs	Canada	unpublished data from the 2000 TDS	10.7 ng/g ^a	Dabeka and McKenzie, 2005 pers. comm
Meat, poultry and eggs	8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999	137 food items collected	mean: 10.39 max: 40.96 (organ meats)	HC, 2004a

Table C.22 Typical Total Cobalt Concentrations in Canadian Foods

Food Type	Location	Description	Concentration	Reference
roou rype	Location	Description	(ng/g ww)	
Meat, poultry and eggs	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 14.2 ^a max: 83 (organ meats)	JWEL, 2004
Meat and poultry	Canad, Montreal between 1986 and 1988	18 samples purchased in	mean: 8.7 max: 38.2	Dabeka and McKenzie, 1995
Meat, fish and poultry	Canada, Ottawa-Hull area in 1969	foods purchased	100	Méranger and Smith, 1972
Meat, fish and poultry	Canada, Winnipeg area in 1972	foods purchased	10	Kirkpatrick and Coffin, 1977
Milk and dairy pr	oducts	-		
Dairy	Canada	unpublished data from the 2000 TDS	5.9 ^a	Dabeka and McKenzie, 2005 pers. comm
Milk and milk products	8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999	137 food items collected	mean: 7.42 max: 24.28	НС, 2004а
Milk and milk Products	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 2.0 ^a max: 9.4	JWEL, 2004
Milk and milk products	Canada, Montreal between 1986 and 1988	13 samples purchased	mean: 5.2 max: 19.8	Dabeka and McKenzie, 1995
Milk and dairy	Canada, Ottawa-Hull area in 1969	foods purchased	60	Méranger and Smith, 1972
Milk and dairy	Canada, Winnipeg area in 1972	foods purchased	20	Kirkpatrick and Coffin, 1977
Infant Formula				
Infant formula	Canada	unpublished data from the 2000 TDS	2.1 ^a	Dabeka and McKenzie, 2005 pers. comm
Infant formula	Canada, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999	137 food items collected	mean: 4.01 max: 5.27	HC, 2004a
Ready to use, milk based	Canada	33 samples	median: 0.40 max: 0.99	Dabeka, 1989
Ready to use, soy based	Canada	16 samples	median: 2.27 max: 5.2	Dabeka, 1989
Concentrated, milk based	Canada	34 samples	median: 1.57 max: 3.11	Dabeka, 1989
Concentrated, soy based	Canada	16 samples	median: 4.33 max: 11.8	Dabeka, 1989

Table C.22 **Typical Total Cobalt Concentrations in Canadian Foods**

	Гурісаl Total Cobalt C		Concentration	
Food Type	Location	Description	(ng/g ww)	Reference
Powdered, milk based	Canada	36 samples	median: 4.96 max: 10.6	Dabeka, 1989
Powdered, soy based	Canada	28 samples	median: 20.0 max: 53	Dabeka, 1989
Cereals, grains and	d baked goods			
Cereal and grain products	Canada	unpublished data from the 2000 TDS	12.5 ^a	Dabeka and McKenzie, 2003 pers. comm
Cereals, grains and baked goods	8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999	137 food items collected	mean: 15.08 max: 69.83	HC, 2004a
Cereals, grains and baked goods	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 7.6 ^a max: 25	JWEL, 2004
Bakery goods and cereals	Canada, Montreal between 1986 and 1988	24 samples purchased	mean: 17.9 max: 75.7	Dabeka and McKenzie, 1993
Cereals	Canada, Ottawa-Hull area in 1969	foods purchased	140	Méranger and Smith, 1972
Cereals	Canada, Winnipeg area in 1972	foods purchased	30	Kirkpatrick and Coffin, 1977
Fruits and fruit ju	ices			
Fruit and fruit products	Canada	unpublished data from the 2000 TDS	7.4 ^a	Dabeka and McKenzie, 200: pers. comm
Fruit and fruit products	8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999	137 food items collected	mean: 10.26 max: 96.89	НС, 2004а
Fruits and fruit juices	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 3.1 ^a max: 8.9	JWEL, 2004
Fruits and fruit juices	Canada, Montreal between 1986 and 1988	25 samples purchased	mean: 4.6 max: 18.1	Dabeka and McKenzie, 1993
Garden fruits	Canada, Ottawa-Hull area in 1969	foods purchased	<40	Méranger and Smith, 1972
Garden fruits	Canada, Winnipeg area in 1972	foods purchased	20	Kirkpatrick and Coffin, 1977
Fruits	Canada, Ottawa-Hull area in 1969	foods purchased	<40	Méranger and Smith, 1972

Table C 22 Trinical Tatal Cabalt C **+:**~ in Considion Food

Food Type	Location	Description	Concentration (ng/g ww)	Reference
Fruits	Canada, Winnipeg area in 1972	foods purchased	20	Kirkpatrick and Coffin, 1977
Root vegetables				
Root vegetables	Canada	unpublished data from the 2000 TDS	7.4 ^a	Dabeka and McKenzie, 2005 pers. comm
Root vegetables 8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999		137 food items collected	mean: 17.70 max: 63.67	HC, 2004a
Potatoes	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 11.6 ^a	JWEL, 2004
Potatoes	Canada, Ottawa-Hull area in 1969	foods purchased	<90	Méranger and Smith, 1972
Potatoes	Canada, Winnipeg area in 1972	foods purchased	20	Kirkpatrick and Coffin, 1977
Root vegetables	Canada, Ottawa-Hull area in 1969	foods purchased	<50	Méranger and Smith, 1972
Root vegetables	Canada, Winnipeg area in 1972	foods purchased	30	Kirkpatrick and Coffin, 1977
Other vegetables				
Other vegetables	Canada	unpublished data from the 2000 TDS	5.2ª	Dabeka and McKenzie, 2005 pers. comm
Other vegetables 8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999		137 food items collected	mean: 8.79 max: 17.32	НС, 2004а
Other vegetables	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 16.8 ^a max: 43	JWEL, 2004
Vegetables	Canada, Montreal between 1986 and 1988	38 samples purchased	mean: 9.7 max: 70.2	Dabeka and McKenzie, 1995
Leafy vegetables	Canada, Ottawa-Hull area in 1969	foods purchased	<50	Méranger and Smith, 1972
Leafy vegetables	Canada, Winnipeg area in 1972	foods purchased	10	Kirkpatrick and Coffin, 1977
Legumes	Canada, Ottawa-Hull area in 1969	foods purchased	<50	Méranger and Smith, 1972

Food Type	Location Description		Concentration (ng/g ww)	Reference	
Legumes	Canada, Winnipeg area in 1972	foods purchased	30	Kirkpatrick and Coffin, 1977	
Mixed Foods					
8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999		137 food items collected	mean: 12.03 max: 17.58	HC, 2004a	
Soups Canada, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999		foods collected	3.4 ^a	НС, 2004а	
Soups	oups Canada, Montreal between 1986 and 1988		mean: 6.1 max: <8.5	Dabeka and McKenzie, 1995	
Miscellaneous Canada, Montreal between 1986 and 1988		7 samples purchased	mean: 4.6 max: 9.1	Dabeka and McKenzie, 1995	
Fats and oils					
Fats, oils and peanuts	Canada	unpublished data from the 2000 TDS	9.8 ^a	Dabeka and McKenzie, 2005 pers. comm	
Fats, oils and peanuts8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999		137 food items collected	mean: 21.82 max: 51.79	НС, 2004а	
Fats, oils, nuts and seeds Port Colborne		186 food samples (includes replicates and duplicates)	mean: 10.6 ^a max: 37	JWEL, 2004	
Fats and oils	Canada, Montreal between 1986 and 1988	3 samples purchased	mean: 16.1 max: 35.7	Dabeka and McKenzie, 1995	
Fats and oils	Canada, Ottawa-Hull area in 1969	foods purchased	<40	Méranger and Smith, 1972	
Fats and oils	Canada, Winnipeg area in 1972	foods purchased	10	Kirkpatrick and Coffin, 1977	

Table C.22 Typical Total Cobalt Concentrations in Canadian Foods

Food Type	Location	Description	Concentration (ng/g ww)	Reference
Sugars and sweets				
Sugar, candy and desserts	Canada	unpublished data from the 2000 TDS	26.7 ^a	Dabeka and McKenzie, 2005 pers. comm
Sugar, candy and desserts8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999		137 food items collected	mean: 13.53 max: 59.89	HC, 2004a
Sugars and sweets Port Colborne		186 food samples (includes replicates and duplicates)	mean: 35.7 ^a max: 48	JWEL, 2004
Sugar and candies	Canada, Montreal between 1986 and 1988	7 samples purchased	mean: 9.1 max: 37.6	Dabeka and McKenzie, 1995
Sugars	Canada, Ottawa-Hull area in 1969	foods purchased	190	Méranger and Smith, 1972
Sugars	Canada, Winnipeg area in 1972	foods purchased	40	Kirkpatrick and Coffin, 1977
Beverages	***************************************			
Non-alcoholic drinks	Canada	unpublished data from the 2000 TDS	2.1 ^a	Dabeka and McKenzie, 2005 pers. comm
Alcoholic drinks	Canada	unpublished data from the 2000 TDS	1.6 ^a	Dabeka and McKenzie, 2005 pers. comm
Non-alcoholic drinks 8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999		137 food items collected	mean: 2.61 max: 6.9	НС, 2004а
Alcoholic drinks 8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999		137 food items collected	mean: 2.77 max: 4.72	НС, 2004а
Alcoholic beverages	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 4.1 ^a	JWEL, 2004
Non-alcoholic beverages	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 0.2 ^a	JWEL, 2004
Beverages	Canada, Montreal between 1986 and 1988	7 samples purchased	mean: 1.1 max: 3.5	Dabeka and McKenzie, 1995

al Total Cabalt C tratio in C dian Fe Table C 22 Т nio ode

Table C.22 Typical Total Cobalt Concentrations in Canadian Foods					
Food Type	Location	Description	Concentration (ng/g ww)	Reference	
Drinks	Canada, Ottawa-Hull area in 1969	foods purchased	<40	Méranger and Smith, 1972	
Drinks	Canada, Winnipeg area in 1972	foods purchased	10	Kirkpatrick and Coffin, 1977	
^a Calculated from	n raw data in original study.				

C-2.3 **Estimated Canadian Daily Intakes**

C-2.3.1 **Dietary Intake**

Food concentrations of cobalt are generally thought to be low; however, food is considered to be the largest source of exposure in the general population (ATSDR, 2004a). The food groups that provide the largest contributions to the dietary intake of cobalt of Canadians are bakery goods and cereals (29.8%), and vegetables (21.9%) (Barceloux, 1999a; Dabeka and McKenzie, 1995). Reported dietary intake rates for cobalt are provided in Table C.23.

Table C.23	Dietary Intake Rates of Cobalt				
Gender	Age	Intake Rate	Comments	Reference	
Both	0 to 1 mo	0.674 µg/kg/d			
Both	2 to 3 mo	0.821 µg/kg/d			
Both	4 to 6 mo	0.697 µg/kg/d			
Both	7 to 9 mo	0.653 µg/kg/d			
Both	10 to 12 mo	0.625 µg/kg/d			
Both	1 to 4 y	0.656 µg/kg/d			
Both	5 to 11 y	0.493 µg/kg/d	A diatama intoleo meto fon		
Male	12 to 19 y	0.350 µg/kg/d	Average dietary intake rate for	UC 2004a	
Male	20 to 39 y	0.279 µg/kg/d	Canadians for Total Diet Study from 1993 to 1999	HC, 2004a	
Male	40 to 64 y	0.240 µg/kg/d	1995 10 1999		
Male	65+ y	0.202 µg/kg/d			
Female	12 to 19 y	0.263 µg/kg/d			
Female	20 to 39 y	0.231 µg/kg/d			
Female	40 to 64 y	0.211 µg/kg/d			
Female	65+ y	0.184 µg/kg/d			
All	All	0.241 µg/kg/d			

Table C.23	Dietary	Intake	Rates	of	Cobalt
	Dictary	Intant	Mails	UL.	Cobalt

C-2.3.2 Relative Contributions of Exposure Pathways to Total Exposure

Dietary exposure to cobalt is highly variable, but generally higher than intake from drinking water (ATSDR, 2004a). Other sources of exposure are considered negligible.

C-2.4 Indices of Human Exposure

In their review, ATSDR (2004a) report that biomonitoring data demonstrate a positive correlation between levels of occupational exposure to cobalt, and concentrations of cobalt in both urine and blood; however, they note that the correlations are more consistent for exposures to soluble cobalt compounds (metal, salts and hard metals). Reported background concentrations of cobalt in various human tissues and fluids are provided in Table C.24.

Fluids				
Tissue or Fluid Type	Location	Description	Concentration	References
Breast milk	Canada	milk collected from 43 mothers in the 1 st 3 months of lactation in Newfoundland between 1988 and 93	0 to 6 μg/L	Friel <i>et al.</i> , 1999
Blood	U.S.	sample of 1,007 1999 NHANES participants, aged 6 yr or older, selected to be representative of the U.S.	geometric mean: 0.36 µg/L of urine; or 0.33 µg/g creatinine	CDC, 2001
Blood	not specified	unexposed humans	0.5 to 1.9 μg/L	Alexandersson, 1988; Ichikawa et al., 1985
Blood	Italy	population of healthy Italians	Range: 0.01 to 0.91 µg/L Mean: 0.39 µg/L	Minoia <i>et al.</i> , 1990
Blood	not specified	male mean reference value	2.96 ± 1.93 nmol/L	Christensen and Poulson, 1994
Blood	not specified	female mean reference value	4.25 ± 2.19 nmol/L	Christensen and Poulson, 1994
Serum	Italy	population of healthy Italians	Range: 0.08 to 0.4 µg/L Mean: 0.21 µg/L	Minoia <i>et al.</i> , 1990
Urine	not specified	mean estimated values	0.1 to 0.3 μg/L	IARC, 1991
Urine	not specified	unexposed humans	0.4 to 20 μg/L	Alexandersson, 1988; Ichikawa et al., 1985

Table C.24	Background Cobalt Concentrations in Human Biological Tissues and
	Fluids

Table C.24	Background Cobalt Concentrations in Human Biological Tissues and
	Fluids

Tissue or Fluid Type	Location	Description	Concentration	References
Urine	Italy	population of healthy Italians	Range: 0.18 to 0.96 µg/L Mean: 0.57 µg/L	Minoia <i>et al.</i> , 1990
Urine	not specified	mean estimated values	0.1 to 2 μg/L	IARC, 1991
Urine	not specified	male mean reference value	0.91 ± 0.69 nmol/mmol	Christensen and Poulson, 1994
Urine	not specified	female mean reference value	1.67 ± 1.71 nmol/mmol	Christensen and Poulson, 1994
Urine	U.S	healthy U.S residents	1.84 µg/L	Paschal <i>et al.</i> , 1998

C-3.0 COPPER BACKGROUND EXPOSURE

C-3.1 Sources and Environmental Fate

C-3.1.1 Sources

Copper and copper compounds are naturally present in the earth's crust (ATSDR, 2004b). Natural sources of copper releases are windblown dust, forest fires, volcanic eruptions, biogenic processes and sea spray (ATSDR, 2004b). Anthropogenic sources of emissions to air include nonferrous metal production, wood production, iron and steel production, waste incineration, industrial applications, coal combustion, nonferrous metal mining, oil and gasoline combustion, and phosphate fertilizer manufacture (ATSDR, 2004b). The major sources of anthropogenic release to land are mining operations, agriculture, sewage sludge and solid waste (ATSDR, 2004b). Copper compounds are released to water in wastewater discharges, and may also be directly applied to water as algacides (ATSDR, 2004b).

C-3.1.2 Environmental Fate and Speciation in Environmental Media

C-3.1.2.1 Atmosphere

Copper is released to the atmosphere either as particulate matter, or adsorbed to particulates (ATSDR, 2004b). Emissions from combustion processes may be in the form of the oxide, elemental copper, and adsorbed copper (ATSDR, 2004b). Copper smelters are expected to emit copper sulphate (ATSDR, 2004b). Emissions from steel manufacturing and in fly ash from oil-fired power plants and open-hearth steel mills may include cupric oxide (Graedel 1978; Perwak *et al.*, 1980). Combustion processes tend to emit copper as fine particles (<1 μ m), while copper associated with larger particles tends to be from windblown soil and dust (Schroeder *et al.*, 1987).

Copper is removed from the atmosphere by bulk deposition, dry deposition, in-cloud scavenging and washout (Schroeder *et al.*, 1987). The source characteristics, particle size, turbulence and wind velocity determine the removal rate and distance travelled of atmospheric copper (ATSDR, 2004b). The fine particulate copper associated with combustion sources may remain in the troposphere for seven to 30 days, and may be transported long distances (Perwak *et al.*, 1980).

FINAL REPORT

C-3.1.2.2 Surface Water and Groundwater

Copper enters surface waters mostly associated with particulate matter (ATSDR, 2004b). Most copper in natural waters is in the Cu(II) state, and is complexed or tightly bound to organic matter, with little

present in the free or readily exchangeable form (ATSDR, 2004b). A significant fraction of copper discharged into natural waters is adsorbed within one hour (Harrison and Bishop, 1984). In most natural waters, the chemical conditions controlling complexation, adsorption and precipitation are such that the level of free Cu(II) is extremely low, even at relatively high copper concentrations (ATSDR, 2004b). Under the pH and carbonate conditions typical of natural waters, most Cu(II) is present as carbonate complexes (Stiff, 1971). The particulate forms of copper include precipitates, insoluble organic complexes and copper adsorbed to mineral solids (ATSDR, 2004b).

C-3.1.2.3 Soils and Sediments

Copper is naturally present in soils, and may be enriched near smelters, mining operations and combustion sources (ATSDR, 2004b). Most copper deposited on the soil will be adsorbed in the top 5 or 10 cm of the soil (ATSDR, 2004b). Sandy soils with low pH have the greatest potential for leaching (ATSDR, 2004b). There is potential for copper that is bound to organic and inorganic matrices to be released into pore water (ATSDR, 2004b). Above a pH of five, absorption of copper from pore water on to soil components becomes is significant, whereas at pHs below five, copper largely remains in pore water and is therefore, mobile in soil (Perwak *et al.*, 1980). However, the precise situation depends on the physical and chemical interactions with soil components (ATSDR, 2004b).

Sediment is an important sink and reservoir for copper (ATSDR, 2004b). The form of copper in sediment is determined by site-specific conditions (ATSDR, 2004b). In aerobic sediments copper is usually bound to organics and iron oxides, although it is occasionally predominantly associated with carbonates (ATSDR, 2004b). Copper is reduced in anaerobic sediments and insoluble salts of Cu(I) are formed (ATSDR, 2004b).

C-3.1.2.4 Biota and Foods

Copper is an essential nutrient for plants; therefore it is taken up from the soil in a process that is actively regulated (Clemens, 2001). Studies in terrestrial environments have shown no or little evidence of bioaccumulation and biomagnification of copper (ATSDR, 2004b). In aquatic systems, copper is bioconcentrated, but there is little evidence of biomagnification (ATSDR, 2004b; Perwak *et al.*, 1980).

Copper is an essential micronutrient and is found in all foods (ATSDR, 2004b). Typical food items that are high in copper include shellfish, organ meats (*e.g.*, liver and kidney), legumes, and nuts (ATSDR, 2004b; Dabeka and McKenzie, 2005, pers. comm.; Dabeka and McKenzie, 1995).

C-3.2 Background Exposure Concentrations in Ontario and Canada

C-3.2.1 Background Concentrations in Air

Reported background concentrations of copper in air are provided in Table C.25.

Location	Description	Concentration	References
Canada (rural)	Annual arithmetic means of PM2.5 samples from 38 urban stations across Canada, 1994 to 2004	range: nd to 0.0758 μg/m ³ mean: 0.00598 μg/m ³	Dann, 2005 pers. comm.
Canada (urban)	Annual arithmetic means of PM2.5 samples from 8 rural stations across Canada, 1994 to 2004	range: nd to 0.783 μg/m ³ mean: 0.0105 μg/m ³	Dann, 2005 pers. comm.
Canada (urban)	Median PM10 concentrations from 11 urban stations across Canada, 1986 to 1993	mean: 0.009 µg/m ³	CEPA/FPAC WGAQOG, 1999
Canada (urban)	Values from literature survey	17 to 500 ng/m ³	Schroeder et al., 1987
British Columbia	Mean from 3 stations between 1995 and 1998	mean: 3.88 ng/m^3 range: 0 to 46.3 ng/m ³	Dryfhout-Clark, 2004, pers. comm

 Table C.25
 Ontario and Canadian Background Copper Concentrations in Air

C-3.2.2 Background Concentrations in Surface Water and Groundwater

Reported background concentrations of copper in surface water, groundwater, drinking water and precipitation are provided in Tables C.26 to C.28, respectively.

Table C.26Ontario and Canadian Background Copper Concentrations in Fresh
Surface Water

	Location	Description	Concentration	References
--	----------	-------------	---------------	------------

	Bullace Water		
Location	Description	Concentration	References
Ontario	Mean levels in raw lake water from 90 sampling pts for 82 Ontario water works	range: nd to 431.0 µg/L mean: 7.54 µg/L	Clubb, 2005 pers. comm.
Ontario	Mean levels in raw river water from 51 sampling pts for 46 Ontario water works	range: nd to 870 μg/L mean: 8.29 μg/L	Clubb, 2005 pers. comm.
Canada	Acid sensitive lakes	range: 1 to 8 ppb	Reed and Henningson, 1984
Lake Superior	11 samples taken at depths up to 251m	range: 629 to 834 ppb mean: 756 ppb	Nriagu <i>et al.</i> , 1996
Lake Erie	11 samples taken at depths up to 55m	range: 703 to 1,061 ppb mean: 870 ppb	Nriagu <i>et al.</i> , 1996
Lake Ontario	9 samples taken at depths up to 145m	range: 540 to 1,098 ppb mean: 830 ppb	Nriagu <i>et al.</i> , 1996

Table C.26Ontario and Canadian Background Copper Concentrations in Fresh
Surface Water

Table C.27Ontario and Canadian Background Copper Concentrations in
Groundwater

Description	Concentration	References			
Mean levels in raw ground water from 61	range: nd to 756.0 µg/L	Clubb, 2005 pers. comm.			
sampling pts for 55 Ontario water works	mean: 3.62 µg/L				
Ontario Background Site Condition Standards ^a 2.5 µg/L MOE, 2004					
5	sampling pts for 55 Ontario water works	sampling pts for 55 Ontario water works mean: 3.62 µg/L			

The value selected for the Standard is within the range of measured groundwater data from the 1998 Drinking Water Surveillance Program, and is considered generally achievable in site situations typical of background.

Table C.28Ontario and Canadian Background Copper Concentrations in Drinking
Water

Location	Description	Concentration	References
Ontario	Mean levels in drinking water from 89 sampling pts in the distribution systems of 54 Ontario water works drawing groundwater	range: nd to 2,930.0 µg/L mean: 147.72 µg/L	Clubb, 2005 pers. comm.
Ontario	Mean levels in drinking water from 82 sampling pts in the distribution systems of 160 Ontario water works drawing lake water	range: nd to 3,700.0 µg/L mean: 65.33 µg/L	Clubb, 2005 pers. comm.
Ontario	Mean levels in drinking water from 90 sampling pts in the distribution systems of 50 Ontario water works drawing river water	range: nd to 7,000.0 μg/L mean: 93.45 μg/L	Clubb, 2005 pers. comm.

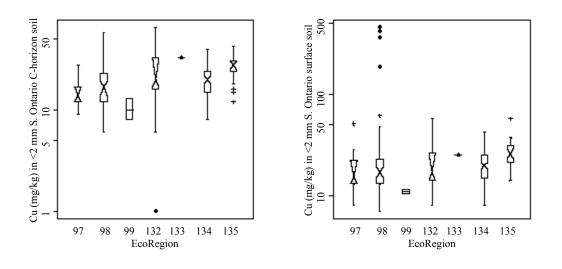


Table C.29 U	Table C.29 Ontario and Canadian Background Copper Concentrations in Precipitation						
Location	Description	Concentration	References				
Southern Ontario		1.57 ppb					
Central Ontario	Average concentration in rain in 1982	1.36 ppb	Chan et al., 1986				
Northern Ontario		1.58 ppb					

Table C.29 Ontario and Canadian Background Copper Concentrations in Precipitation

C-3.2.3 Background Concentrations in Soils and Sediment

Concentrations of copper in soils from across Southern Ontario are plotted in Figure C-4, where the extent of the whiskers provides an estimate of background range for each Ecoregion that is not affected by outliers (+ near outlier; o far outlier) due to natural or anthropogenic processes (Garrett, 2005). Reported background concentrations of copper in soil and dust are provided in Tables C.29 to C.31, respectively.

EcoRegions:

- 97 Lake Timiskaming Lowland, n = 17
- 98 Algonquin-Lake Nipissing (includes Sudbury region), n = 112
- 99 Southern Laurentians, n = 3
- 132 St. Lawrence Lowlands, n = 30

- 133 Frontenac Axis, n = 1
- 134 Manitoulin-Lake Simcoe, n = 89
- 135 Lake Erie Lowlands, n = 42

Figure C-5 Tukey Boxplots, by EcoRegion in Southern Ontario, of Copper in C-horizon (70-100 cm) and Surface (top 25 cm) Soils.

Table C.30 Ontario and Canadian Background Copper Concentrations in Soil			
Location	Description	Concentration	References
Ottawa	garden soil, n=50, collected winter 1993 from 10 Ottawa neighbourhoods	12.28 mg/kg	Rasmussen et al., 2001
Ontario	upper-limit of background ^a	56 mg/kg (agricultural land use) 85 mg/kg (all other land use)	MOE, 2004
Ontario	Ontario Typical Range ^b - old urban parkland	OTR: ~10 to 370 mg/kg mean: ~20 mg/kg OTR ₉₈ : 65 mg/kg	MOEE, 1994
Ontario	Ontario Typical Range ^b - rural parkland	OTR: ~10 to 90 mg/kg mean: ~20 mg/kg OTR ₉₈ : 41 mg/kg	MOEE, 1994
Canada	uncultivated, uncontaminated soils, remote from ore bodies	range: 5 to 50 mg/kg mean: 22 mg/kg	McKeague and Wolynetz, 1980
Appalachians (Canada)	uncultivated, uncontaminated soils, remote from ore bodies, n=45	17 mg/kg	McKeague and Wolynetz, 1980
Canadian Shield	uncultivated, uncontaminated soils, remote from ore bodies, n=12	11 mg/kg	McKeague and Wolynetz, 1980
St. Lawrence Lowlands	uncultivated, uncontaminated soils, remote from ore bodies, n=40	19 mg/kg	McKeague and Wolynetz, 1980
Interior Plains (Canada)	uncultivated, uncontaminated soils, remote from ore bodies, n=34	21 mg/kg	McKeague and Wolynetz, 1980
Cordillerans (Canada)	uncultivated, uncontaminated soils, remote from ore bodies, n=19	46 mg/kg	McKeague and Wolynetz, 1980

^a Value was derived from the Ontario Typical Range values and is representative of the upper limit of typical province-wide background concentrations in soils that are not contaminated by point sources.

^b Ontario Typical Ranges (OTRs) represent the expected range of concentrations of contaminants in surface soil from areas in Ontario not subjected to the influence of known point sources of emissions. The OTR₉₈ represents an upper limit of normal. OTR and mean values were estimated from graphs. These values apply to the land use and soil type in Ontario for which they were developed. The soil type is all soils except loamy sand, sand and soils with organic carbon content >17%.

Table C.3	1 Ontario and Canadian Background Copper Concentrations in Dust				
Location	Description	Concentration	References		
Ottawa	Household dust, n=50, collected winter 1993 from 10 Ottawa neighbourhoods	170.69 mg/kg	Rasmussen et al., 2001		
Ottawa	Street dust, n=50, collected winter 1993 from 10 Ottawa neighbourhoods	38.13 mg/kg	Rasmussen et al., 2001		

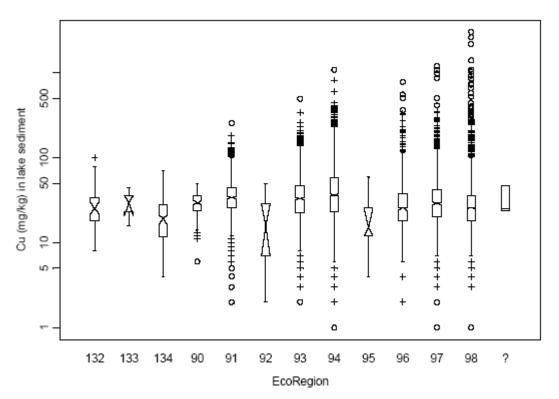

The U.S. EPA (2003) compiled mean background concentrations of copper in soil for each state, and reported values ranging from 5.0 mg/kg dry weight in Delaware to 53 mg/kg dry weight in Oregon. Generic background concentrations of copper in soil based on soil type were compiled by Kabata-Pendias and Pendias (1985) and are presented as generic values that may be applied to any area of the U.S. (RAIS, 2004) (see Table C.32).

Table C.32Generic Background Concentrations of Copper in Soil by Soil Type
(Kabata-Pendias and Pendias, 1985)

Soil Type	Range (ppm)	Mean (ppm)
Alluvial soils	5 to 50	27
Chernozems and dark prairie soils	10 to 70	27
Clay and clay-loamy soils	7 to 70	29
Forest soils	7 to 150	17
Lateritic soils		
Light desert soils	5 to 100	24
Light loamy soils	3 to 70	25
Loess and soils on silt deposits	7 to 100	25
Low Humic Gley soils and humus groundwater podzols		
Organic light (or rich) soils	1 to 100	15
Sandy and lithosols on sandstone		
Silty prairie soils	10 to 50	20
Soils on glacial till and drift	15 to 50	21
Soils on lacustrine deposits		
Soils over granites and gneisses	7 to 70	24
Soils over limestones and calcareous rocks	7 to 70	21
Soils over volcanic rocks (or ash)		
Various soils	3 to 300	26
Western Alluvial soils		

An estimated upper limit for background variation in copper levels in lake sediment is approximately 100 to 150 mg/kg, except for the Lake Nipigon EcoRegion where 300 mg/kg is more appropriate (Garrett, 2005). Concentrations of copper in sediment from across Southern Ontario are plotted in Figure C-6, where the extent of the whiskers provides an estimate of background range for each EcoRegion that is not affected by outliers (+ near outlier; o far outlier) due to natural or anthropogenic processes. However the whiskers will underestimate the full range of natural background when mineral occurrences are present in the region (Garrett, 2005). Reported background concentrations of copper in sediment are provided in Table C.33.

EcoRegions:

- Lac Seul Upland, n = 4190
- 91 Lake of the Woods, n = 2,118
- 92 Rainy River, n = 29
- Thunder Bay-Quetico, n = 1,48393
- 94 Lake Nipigon, n = 3,003
- 95 Big Trout Lake, n = 27
- 96 Abitibi Plains, n = 2,045
- 97 Lake Timiskaming Lowland, n = 5,065
- Algonquin-Lake Nipissing (includes Sudbury region), n = 4,27998
- 132 St. Lawrence Lowlands, n = 71
- 133 Frontenac Axis, n = 10
- 134 Manitoulin-Lake Simcoe, n = 128?
 - Unclassified, n = 3

Tukey Boxplots, by EcoRegion in Ontario, of Copper in Sediment from Deep **Figure C-6** Centre-lake Basins, below the Surface Gyttja.

Location	Description	Concentration	References
Lake Ontario	surficial sediments sampled in 1998	range: 3.7 to 108.6 mg/kg	Marvin et al., 2003
Lake Ontario	pre-colonial background from deep sediments 50 mg/kg		Marvin et al., 2003
Lake Erie	surficial sediments, sampled in 1997 to 1998	range' 3 to bx / mg/kg	
Lake Erie, West Basin	pre-colonial background from deep sediments	15.1 mg/kg	Painter et al., 2001
Lake Erie, Centre Basin	pre-colonial background from deep sediments 35.1 mg/kg		Painter et al., 2001
Lake Erie, East Basin	pre-colonial background from deep sediments	28.4 mg/kg	Painter et al., 2001
Ontario	Background Site Condition Standard ^a	16 mg/kg	MOE, 2004

Ontario and Canadian Background Copper Concentrations in Sediments Table C.33

Value is within the range of measured background sediment in the 1993 Sediment Guidelines.

C-3.2.4 **Background Concentrations in Biota and Foods**

Reported background concentrations of copper in fish, other aquatic biota, aquatic plants and terrestrial biota were not found. Reported background concentrations of copper in Canadian foods are provided in Table C.34.

Food Type	Location	Description	Concentration (ng/g ww)	Reference
Fish and seafood				
Fish and shellfish	Canada	unpublished data from the 2000 TDS	992.4 ^a	Dabeka and McKenzie, 2005 pers. comm
Fish and shellfish	8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999	137 food items collected	mean: 811.68 max: 1972.4	HC, 2004a
Fish and shellfish	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 240 ^a	JWEL, 2004

Table C 34	Typical Total Copper	Concentrations in	Canadian Foods
1 able 0.34	Typical Total Copper	Concentrations in	Callaulali Foous

Food Type	Location	Description	Concentration (ng/g ww)	Reference
Meat / poultry pro	ducts	•		•
Meat, poultry and eggs	Canada	unpublished data from the 2000 TDS	10,910.6 ^{a,b}	Dabeka and McKenzie, 2005 pers. comm
Meat, poultry and eggs	8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999	137 food items collected	mean: 3495.75 max: 33372.87 (organ meats)	HC, 2004a
Meat, poultry and eggs	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 21,935 ^a max: 170,000 (organ meats)	JWEL, 2004
Meat, fish and poultry	Canada, Ottawa-Hull area in 1969	foods purchased	1,490	Méranger and Smith, 1972
Meat, fish and poultry	Canada, Winnipeg area in 1972	foods purchased	1,130	Kirkpatrick and Coffin, 1977
Milk and dairy pro	ducts			
Dairy	Canada	unpublished data from the 2000 TDS	221.0 ^a	Dabeka and McKenzie, 2005 pers. comm
Milk and milk products	8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999	137 food items collected	mean: 200.93 max: 843.13	HC, 2004a
Milk and milk Products	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 179 ^a max: 230	JWEL, 2004
Milk and dairy	Canada, Ottawa-Hull area in 1969	foods purchased	170	Méranger and Smith, 1972
Milk and dairy	Canada, Winnipeg area in 1972	foods purchased	190	Kirkpatrick and Coffin, 1977
Infant formula	- -			
Infant formula	Canada	unpublished data from the 2000 TDS	783.5 ^a	Dabeka and McKenzie, 2005 pers. comm
Infant formula	Canada	137 food items	mean: 789.76 max: 817.44	HC, 2004a
Cereals, grains and	baked goods			
Cereal and grain products	Canada	unpublished data from the 2000 TDS	1,367.0 ^a	Dabeka and McKenzie, 2005 pers. comm

Table C.34 Typical Total Copper Concentrations in Canadian Foods

Food Type	Location	Description	Concentration (ng/g ww)	Reference
Cereals, grains and baked goods	8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999	137 food items collected	mean: 1,300.04 max: 4,574.87	HC, 2004a
Cereals, grains and baked goods	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 1,006 ^a max: 1,700	JWEL, 2004
Cereals	Canada, Ottawa-Hull area in 1969	foods purchased	2,790	Méranger and Smith, 1972
Cereals	Canada, Winnipeg area in 1972	foods purchased	2,260	Kirkpatrick and Coffin, 1977
Fruits and fruit juic	ces	.		
Fruit and fruit products	Canada	unpublished data from the 2000 TDS	814.2 ^a	Dabeka and McKenzie, 2005 pers. comm
Fruit and fruit products	8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999	137 food items collected	mean: 911.28 max: 5,305.59	НС, 2004а
Fruits and fruit juices	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 687 ^a max: 3,100 (dried fruits)	JWEL, 2004
Garden fruits	Canada, Ottawa-Hull area in 1969	foods purchased	900	Méranger and Smith, 1972
Garden fruits	Canada, Winnipeg area in 1972	foods purchased	810	Kirkpatrick and Coffin, 1977
Fruits	Canada, Ottawa-Hull area in 1969	foods purchased	520	Méranger and Smith, 1972
Fruits	Canada, Winnipeg area in 1972	foods purchased	540	Kirkpatrick and Coffin, 1977
Root vegetables				
Root vegetables	Canada	unpublished data from the 2000 TDS	774.3 ^ª	Dabeka and McKenzie, 2005 pers. comm

Table C.34 Typical Total Copper Concentrations in Canadian Foods

Food Type	Location	Description	Concentration (ng/g ww)	Reference	
Root vegetables	8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999	137 food items collected	mean: 839.74 max: 2,650.79	НС, 2004а	
Potatoes	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 675 ^a	JWEL, 2004	
Potatoes	Canada, Ottawa-Hull area in 1969	foods purchased	2,530	Méranger and Smith, 1972	
Potatoes	Canada, Winnipeg area in 1972	foods purchased	1,180	Kirkpatrick and Coffin, 1977	
Root vegetables	Canada, Ottawa-Hull area in 1969	foods purchased	880	Méranger and Smith, 1972	
Root vegetables	Canada, Winnipeg area in 1972	foods purchased	680	Kirkpatrick and Coffin, 1977	
Other vegetables					
Other vegetables	Canada	unpublished data from the 2000 TDS	782.8 ^a	Dabeka and McKenzie, 2005 pers. comm	
Other vegetables	8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999	137 food items collected	mean: 836.84 max: 3,715.39	HC, 2004a	
Other vegetables	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 1,259 ^a max: 4,300	JWEL, 2004	
Leafy vegetables	Canada, Ottawa-Hull area in 1969	foods purchased	840	Méranger and Smith, 1972	
Leafy vegetables	Canada, Winnipeg area in 1972	foods purchased	920	Kirkpatrick and Coffin, 1977	
Legumes	Canada, Ottawa-Hull area in 1969	foods purchased	1,480	Méranger and Smith, 1972	
Legumes	Canada, Winnipeg area in 1972	foods purchased	1,170	Kirkpatrick and Coffin, 1977	

Table C 34 Typical Total Conner Concentrations in Canadian Foods

Food Type	Location	Description	Concentration (ng/g ww)	Reference
Mixed Foods or Mi	scellaneous	•		•
Miscellaneous (including soup)	8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999	137 food items collected	mean: 1,528.76 max: 15,344.29 (seeds shelled)	HC, 2004a
Soups	Canada, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999	foods collected	256 ^a	HC, 2004a
Fats and oils	1	TT		
Fats, oils and peanuts	Canada	unpublished data from the 2000 TDS	1,276.3 ^a	Dabeka and McKenzie, 2005 pers. comm
Fats, oils and peanuts	8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999	137 food items collected	mean: 2,044.04 max: 5,911.07	HC, 2004a
Fats, oils, nuts and seeds	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 2,514 ^a max: 9,800 (nuts and seeds)	JWEL, 2004
Fats and oils	Canada, Ottawa-Hull area in 1969	foods purchased	1,890	Méranger and Smith 1972
Fats and oils	Canada, Winnipeg area in 1972	foods purchased	1,560	Kirkpatrick and Coffin, 1977
Sugars and sweets	*	· · · · · · · · · · · · · · · · · · ·		-
Sugar, candy and desserts	Canada	unpublished data from the 2000 TDS	727.4 ^a	Dabeka and McKenzie, 2005 pers. comm
Sugar, candy and desserts	8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999	137 food items collected	mean: 647.06 max: 2,896.88	HC, 2004a

Table C.34 Typical Total Copper Concentrations in Canadian Foods

Food Type	Location	Description	Concentration (ng/g ww)	Reference	
Sugars and sweets	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 487 ^a max: 1,400	JWEL, 2004	
Sugars	Canada, Ottawa-Hull area in 1969	foods purchased	2,360	Méranger and Smith, 1972	
Sugars	Canada, Winnipeg area in 1972	foods purchased	1,450	Kirkpatrick and Coffin, 1977	
Beverages					
Non-alcoholic drinks	Canada	unpublished data from the 2000 TDS	56.1ª	Dabeka and McKenzie, 2005 pers. comm	
Non-alcoholic drinks		137 food items collected	mean: 108.00 max: 193.32	HC, 2004a	
Non-alcoholic beverages	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 35.4 ^a	JWEL, 2004	
Alcoholic drinks	Canada	unpublished data from the 2000 TDS	66.2 ^a	Dabeka and McKenzie, 2005 pers. comm	
8 Canadian cities, Toronto, Montreal, Halifax, Winnipeg, Vancouver, Ottawa, Whitehorse and Calgary between 1993 and 1999		137 food items collected	mean: 88.5 max: 134.28	НС, 2004а	
Alcoholic beverages	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 27.3 ^a	JWEL, 2004	
Drinks	Canada, Ottawa-Hull area in 1969	foods purchased	270	Méranger and Smith, 1972	
Drinks	Canada, Winnipeg area in 1972	foods purchased	170	Kirkpatrick and Coffin, 1977	

Table C.34 Typical Total Copper Concentrations in Canadian Foods

^a Calculated from raw data in original study.

^b High levels in the year 2000 data for meat, poultry and eggs can be largely attributed to the extremely high copper concentrations reported for organ meats. Organ meats were included in previous years' studies, but the average concentration in organ meats between 1993 and 1999 was four fold lower than the 2000 value. Values for meat, poultry and eggs, excluding organ meats, are 1006 and 1,342 ng/g for 1993 to 1999 and 2000, respectively.

C-3.3 **Estimated Canadian Daily Intakes**

C-3.3.1 **Dietary Intake**

The recommended limit for dietary intake of copper is 10 to 12 mg/day for adults (WHO, 1996). ATSDR (2004b) noted that dietary intake of copper can be elevated by regular consumption of certain foods, including shellfish, organ meats, legumes and nuts; however, the only food likely to elevate dietary intake above the WHO limit is shellfish. Regular consumption of shellfish could increase dietary intake by 5.7 to 136 mg/day (above that of the general U.S. population) (ATSDR, 2004b). Reported Canadian dietary intake rates for copper are provided in Table C.35.

Table C.35	Dietary Intake Rates for Copper			
Gender	Age	Intake Rate	Comments	Reference
Both	0 to 1 mo	62.025 µg/kg/d		
Both	2 to 3 mo	77.494 µg/kg/d		
Both	4 to 6 mo	41.391 µg/kg/d		
Both	7 to 9 mo	49.592 µg/kg/d		
Both	10 to 12 mo	39.785 µg/kg/d		
Both	1 to 4 y	45.742 μg/kg/d		
Both	5 to 11 y	36.309 µg/kg/d		
Male	12 to 19 y	25.084 µg/kg/d	Average dietary intake rate for Canadians	HC, 2004a
Male	20 to 39 y	21.140 µg/kg/d	for Total Diet Study from 1993 to 1999	IIC, 2004a
Male	40 to 64 y	17.496 µg/kg/d		
Male	65+ y	14.289 µg/kg/d		
Female	12 to 19 y	18.831 µg/kg/d		
Female	20 to39 y	17.423 µg/kg/d		
Female	40 to 64 y	14.961 µg/kg/d		
Female	65+ y	13.364 µg/kg/d		
All	All	17.651 μg/kg/d		

D! T / 1 D ſ 0

C-3.3.2 **Relative Contributions of Exposure Pathways to Total Exposure**

In the general population, the highest copper exposure comes from food (2 mg/day) and drinking water (0.15 mg/day) (ATSDR, 2004b). The contribution made by water distribution systems (*i.e.*, copper plumbing) to copper intake from drinking water is of special concern (ATSDR, 2004b). Copper intake through inhalation is much less significant (0.1 to 4.0 µg/day) (ATSDR, 2004b). Dermal exposure may also result from the use of copper fungicides and algacides (ATSDR, 2004b).

The inhalation exposure of children to copper is expected to be similar to that of adults; however, exposure through oral routes may be different due to differences in diet and behaviour (ATSDR, 2004b).

C-3.4 Indices of Human Exposure

Background concentrations of copper in various human tissues and fluids are provided in Table C.36.

Table C.36 Background Copper Concentrations in Human Biological Tissues and Fluids					
Tissue or Fluid Type	Location	Description	Concentration	References	
Blood	Italy	healthy nonoccupationally exposed workers	0.8 to 1.6 mg/L	Minoia <i>et al.</i> , 1990	
Breast milk	Canada	milk collected from 43 mothers in the 1 st 3 months of lactation in Newfoundland between 1988 and 1993	0.21 to 0.57 mg/L	Friel <i>et al.</i> , 1999	
Serum	unknown	female	120 µg/g dw	Georgopoulos	
Serum	unknown	male	109 µg/g dw	<i>et al.</i> , 2001;	
Serum	unknown	newborn	36 µg/g dw	Scheinberg, 1979; Sternlieb and Scheinberg, 1977	
Serum	unknown	normal mean level	1.1 mg/L	Versieck and Cornelis, 1989; Trebig and Schaller, 1984	
Serum	Italy	healthy nonoccupationally exposed workers	0.6 to 1.37 mg/L	Minoia <i>et al.</i> , 1990	
Urine	unknown	normal mean level	15 to 36 µg/24 hr	Versieck, 1985	
Urine	Unknown	mean urinary daily excretion	20 µg/hr	Trebig and Schaller, 1984	

C-4.0 LEAD BACKGROUND EXPOSURE

C-4.1 Sources and Environmental Fate

C-4.1.1 Sources

Lead is a naturally occurring element found in the earth's crust, mostly as the ore galena (PbS), and in all other environmental media; however, anthropogenic processes are responsible for the majority of lead in the environment (ATSDR, 1999). Combustion of leaded gasoline, which was banned in Canada in 1990 (except for racing fuel) (HC, 2004c; EC, 2002) and in the U.S. in 1996, was once the primary source of anthropogenic releases to the atmosphere (ATSDR, 1999). Currently, the major contributors to total atmospheric lead releases are industrial releases from nonferrous smelters, battery plants, chemical plants, and releases from old lead-based paint (ATSDR, 1999). Releases from lead-based paints are often confined to the immediate vicinity of the painted surface, but deterioration or removal of the paint can lead to high localized concentrations of lead in air and in dust on exposed surfaces (ATSDR, 1999). Cigarettes smoking and second-hand smoke are also sources of inhalation exposure to lead (WHO, 1977).

The largest releases of lead to water are from the steel and iron industries, and from lead production and processing operations (ATSDR, 1999). Solid wastes concentrated in landfills, including solder, weights, ballast, waste from ore production, iron and steel production and ammunition use, are important sources of releases to soil (ATSDR, 1999).

C-4.1.2 Environmental Fate and Speciation in Environmental Media

C-4.1.2.1 Atmosphere

The principal forms of lead particle emissions from mines and smelters are the lead-sulphur compounds (PbSO₄, PbO·PbSO₄ and PbS) (U.S. EPA, 1986). The chemistry of lead in the atmosphere is unclear, and it is not known how the chemical composition of lead changes during dispersion; however inorganic lead in the atmosphere is present primarily in particulate form as PbSO₄ and PbCO₃ (ATSDR, 1999; U.S. EPA, 1986). Particulates are removed from the atmosphere *via* wet and dry deposition, after being transported distances up to thousands of kilometres (ATSDR, 1999). The time to deposition, and hence the distance traveled by particulates, is determined principally by particle size, with smaller particles travelling longer distances (ATSDR, 1999).

FINAL REPORT

C-4.1.2.2 Surface Water and Groundwater

The stable ionic species of lead in natural waters is the divalent form (Pb^{2+}) (ATSDR, 1999). Lead has a tendency to form low-solubility compounds with major anions, and in surface waters, the solubility of lead is limited by the pH and dissolved salt content of the water (ATSDR, 1999). Above a pH of 5.4, poorly soluble lead carbonates are formed and precipitate out of solution (U.S. EPA, 1979). Below pH 5.4, lead sulphate limits the concentration of lead in solution (U.S. EPA, 1979). In water with high dissolved salt content (*i.e.*, in hard water) the total solubility of lead is severely limited (ATSDR, 1999). Dissolved lead concentrations in most surface and ground waters are low, due to the formation of compounds with low water solubilities that precipitate out of the water column (*e.g.*, hydroxides, carbonates, sulphates and phosphates) (Mundell *et al.*, 1989). Precipitated lead may be sedimented, or, in fast flowing rivers, transported some distance. Lead may be microbially methylated to tetramethyl lead in anaerobic sediments, and if the overlying water is also anaerobic it may volatilize into the atmosphere (U.S. EPA, 1979).

C-4.1.2.3 Soils and Sediments

Lead is a minor component of natural soils. Additional lead is added to soils *via* wet and dry deposition (likely as PbSO₄ and PbCO₃) and *via* surface water flow (ATSDR, 1999). Since the sale of leaded gasoline was banned, emissions of organic tetraalkyl lead compounds have dropped significantly; however, the deposited organolead compounds and their transformation products still remain in soil (ATSDR, 1999). Data suggest that the transformation products of tetraethyl and tetramethyl lead are the highly water soluble trialkyl lead oxides, which may be subject to leaching (ATSDR, 1999; U.S. EPA, 1985b).

The availability and mobility of lead increases in acid soils, due to the prevalence of ionic lead (Pb^{2+}) and ion pairs (*e.g.*, $PbSO_4^{0}$) (Reddy *et al.*, 1995). At near neutral pH, dissolved organic carbon-lead complexes predominate, but as pH increases further, the level of dissolved lead declines (Reddy *et al.*, 1995). Most lead in soils is strongly absorbed, and does not leach into surface water or groundwater (U.S. EPA, 1986; NSF, 1977); however, it may be transported in surface waters *via* erosion of leadcontaining soils (ATSDR, 1999). Given its relative immobility, the principal factor in determining the concentration of lead in soils is the rate of atmospheric deposition (ATSDR, 1999).

FINAL REPORT

C-4.1.2.4 Biota and Foods

Lead enters the terrestrial food chain *via* deposition on to plant and soil surfaces, followed by biological uptake (ATSDR, 1999). Lead may be taken up from soil *via* the root system, by direct foliar uptake, and by surface deposition of particulates (ATSDR, 1999). Generally, the greatest body burdens of lead are found in the oldest organisms.

In aquatic systems, lead concentrations are usually highest in benthic organisms and algae, and lowest in high trophic level predators (ATSDR, 1999). Plants and animals bioconcentrate lead, but biomagnification of lead has not been observed (ATSDR, 1999). A review of BCF factors in aquatic biota found the following median values: 42 in fish, 536 in oysters, 500 in insects, 725 in algae, and 2,570 in mussels (Eisler, 1988c). Depuration of lead is relatively rapid, with half lives of tetramethyl lead in rainbow trout of 30 to 45 hours (Eisler, 1988c).

Due to it past use, lead is found in most food items (ATSDR, 1999). Due to the phasing out of leaded gasoline sales in the early 1980s, and the virtual elimination of the use of lead-soldered cans for food storage, lead concentrations in environmental media and food are generally much lower today than in the 1970s and 1980s (ATSDR, 1999). Typical foods that are high in lead are processed foods, for example, soups and frozen dinners (Dabeka and McKenzie, 2005 pers. comm.; HC, 2004a; Dabeka and McKenzie, 1995; 1992). Lead is also found in comparably high concentrations in sugars and candies (Dabeka and McKenzie, 2005 pers. comm.).

C-4.2 Background Exposure Concentrations in Ontario and Canada

The following tables present typical background concentrations of lead in environmental media from areas that are not influenced by either a major anthropogenic or natural source of lead contamination.

It should be noted that lead concentrations in environmental media and biological tissues/fluids are generally much lower today than in the 1970s and 1980s, due to the phasing out of leaded gasoline sales, and the virtual elimination of the use of lead-soldered cans for food storage (ATSDR, 1999). In addition, older Canadian diet studies (and presumably other studies in which lead was measured in various media) used analytical techniques that may not have been sensitive enough for the purpose (Dabeka *et al.*, 1987). The detection limit for lead used in the 1987 study by Dabeka *et al.* was two to three orders of magnitude more sensitive than in previous work. For these reasons, caution should be used in applying older lead data to current situations.

C-4.2.1 Background Concentrations in Air

Unleaded gasoline was introduced in Canada in 1975, and sale of leaded gasoline for use in cars was banned in 1990 (HC, 2004c). Between 1973 and 1985, lead concentrations in Canadian air dropped by 76%, and lead concentrations in the ambient air of most Canadian cites is currently below detection limits (HC, 2004c). Reported background concentrations of lead in air are provided in Table C.37.

Table C.57 Official of and Canadian Dackground Lead Concentrations in An			
Location	Description	Concentration	References
Canada (rural)	Annual arithmetic means of PM2.5 samples from 38 urban stations across Canada, 1994 to 2004	range: nd to 0.028 μg/m ³ mean: 0.0038 μg/m ³	Dann, 2005 pers. comm.
Canada (urban)	Annual arithmetic means of PM2.5 samples from 8 rural stations across Canada, 1994 to 2004	range: nd to 0.42 μ g/m ³ mean: 0.0045 μ g/m ³	Dann, 2005 pers. comm.
Canada (urban)	Median PM10 concentrations from 11 urban stations across Canada, 1986 to 1993	mean: 0.043 μg/m ³	CEPA/FPAC WGAQOG, 1999
Windsor, Ontario	Indoor (home and office) samples of personal air taken 1991 to 1992	range: 0.7 to 47.1 ng/m ³ mean: 9.0 ng/m ³	Bell et al., 1994
Windsor, Ontario	Outdoor (residential and commercial neighbourhoods) samples of personal air taken 1991 to 1992	range: 2.9 to 29.2 ng/m ³ mean: 13.0 ng/m ³	Bell et al., 1994
Windsor, Ontario	6 samples of ambient air taken in 1992	range: 5.4 to 30.5 ng/m ³ mean: 16.0 ng/m ³	Bell et al., 1994
Canada	Geometric mean from stations across Canada	geom. mean: <0.1 µg/m ³	НС, 1992
British Columbia	Mean from 3 stations between 1995 and 1998	mean: 3.58 ng/m ³ range: 0 to 29.2 ng/m ³	Dryfhout-Clark, 2004, pers. comm
Not specified	Large cities	2 to 4 μ g/m ³	WHO, 1989
Not specified	Suburban areas	<0.2 µg/m ³	WHO, 1989

Zukovickaja et al., 1966

C-4.2.2 **Background Concentrations in Surface Water and Groundwater**

Reported background concentrations of lead in surface water and groundwater are provided in Tables C.38 and C.39, respectively.

Table C.38 Ontario and Canadian Background Lead Concentrations in Fresh Surface Water				
Location	Description	Concentration	References	
Ontario	Mean levels in raw lake water from 90 sampling pts for 82 Ontario water works	range: nd to 66.0 µg/L mean: 0.38 µg/L	Clubb, 2005 pers. comm.	
Ontario	Mean levels in raw river water from 51 sampling pts for 46 Ontario water works	range: nd to 49.0 μg/L mean: 0.64 μg/L	Clubb, 2005 pers. comm.	
U.S.	50,000 surface water stations	mean: 3.9 µg/L	Eckel and Jacob, 1988	
U.S.	lakes	6 to 34 μg/L	HSDB, 2000	
Worldwide	lakes and rivers	average concentration: 2 μg/kg	Eisler, 1988c	
Not specified		0.1 mg/L	Kopp and Kroner, 1970	

. . ----

 $1 \mu g/L$

unpolluted areas

Location	Description	Concentration	References
Ontario	Mean levels in raw ground water from 61 sampling pts for 55 Ontario water works	range: nd to 37.0 µg/L mean: 0.29 µg/L	Clubb, 2005 pers. comm.
Ontario	Background Site Condition Standards ^a	1 μg/L	MOE, 2004

Surveillance Program, and is considered generally achievable in site situations typical of background.

Lead is a component of many solders, fluxes and pipes; therefore, drinking water may become contaminated with lead as it passes through the distribution system or building plumbing. A U.S. survey of households, schools and office buildings, with corroded plumbing, found lead levels in tap water ranging from 10 to 30 µg/L, resulting from leaching of lead (U.S. EPA, 1989). Reported concentrations of lead in Ontario and Canadian drinking water are provided in Table C.40. Background concentrations of lead in precipitation were not found.

Not specified

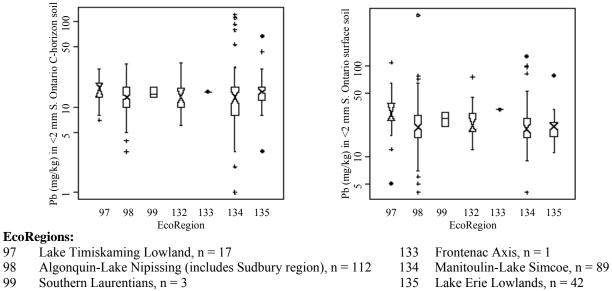

Table C.40 Ontario and Canadian Background Lead Concentrations in Drinking Wate			
Location	Description	Concentration	References
Ontario	Mean levels in drinking water from 89 sampling pts in the distribution systems of 54 Ontario water works drawing groundwater	range: nd to 120.0 µg/L mean: 2.08 µg/L	Clubb, 2005 pers. comm.
Ontario	Mean levels in drinking water from 82 sampling pts in the distribution systems of 160 Ontario water works drawing lake water	range: nd to 460.0 µg/L mean: 2.92 µg/L	Clubb, 2005 pers. comm.
Ontario	Mean levels in drinking water from 90 sampling pts in the distribution systems of 50 Ontario water works drawing river water	range: nd to 332.0 µg/L mean: 2.54 µg/L	Clubb, 2005 pers. comm.
Canada	survey of bottled water purchased in 1990 (water from both Canadian and imported sources, available in Canada)	range: <0.001 to 0.074 μg/g mean: 0.0026 μg/g	Dabeka et al., 1992
Canada	71 municipalities - untreated water	mean: <1 μg/L range: <1 μg/L to 65 μg/L	Méranger <i>et al.</i> , 1979; 1981
Ontario	64 municipalities	mean: 4 μg/L range: <1 to 48 μg/L	НС, 1992
Montreal, PQ	18 homes; tap water	range: 0.25 to 2.76 µg/L median: 0.65 µg/L	Méranger et al., 1984b
Canada	5 cities	median: 2 µg/L	Dabeka et al., 1987
Ontario	1 week composites from 40 homes at 7 locations	range: 1.1 to 30.7 µg/L median: 4.8 µg/L	НС, 1992

Table C.40 Ontario and Canadian Background Lead Concentrations in Drinking Water

C-4.2.3 Background Concentrations in Soils and Sediment

The earth's crust contains an average of 16 mg/kg of lead (U.S. EPA, 1980). Concentrations of lead in soils from across Southern Ontario are plotted in Figure C-7, where the extent of the whiskers provides an estimate of background range for each EcoRegion that is not affected by outliers (+ near outlier; o far outlier) due to natural or anthropogenic processes (Garrett, 2005). Reported background concentrations of lead in soil and dust are provided in Tables C.41 and C.42, respectively.

99 St. Lawrence Lowlands, n = 30132

97

98

Figure C-7	Tukey Boxplots, by EcoRegion in Southern Ontario, of Lead in C-horizon
	(70-100 cm) and Surface (top 25 cm) Soils

Table C.41 Ontario and Canadian Background Lead Concentrations in Soil			trations in Soil
Location	Description	Concentration	References
Ottawa	garden soil, n=50, collected winter 1993 from 10 Ottawa neighbourhoods	42 mg/kg	Rasmussen et al., 2001
Ontario	upper-limit of background ^a	55 to 120 mg/kg	MOE, 2004
Not specified	natural lead content of soil (due to crustal rock - <i>i.e.</i> , galena)	<10 to 30 mg/kg	ATSDR,1993
Canada	background levels for total lead	mean: 12 mg/kg	Nriagu, 1978
Canada	normal agricultural soil	<1 to 12 mg/kg	Warren et al., 1970
Ontario	296 agricultural soils	mean: 46 mg/kg range: 1.5 to 888 mg/kg	Frank <i>et al.</i> , 1976
Ontario	neutral pH soils from heavily hunted upland areas influenced by lead shot sampled in 2000	range: 3 to 199 mg/kg mean: 69 mg/kg	Holdner <i>et al.</i> , 2004
St. Thomas, Ontario	acid (5.5) pH soils from heavily hunted upland areas influenced by lead shot	max: 6,700 mg/kg	Emerson, 1994
Canada	cropped soils	average: 14 mg/kg	CCME, 1999
Alberta	agricultural soils near settlements	range: 2 - 28 mg/kg mean: 9 mg/kg	ССМЕ, 1999

Tuble Citi Contains and Canadian Dachground Lead Concentrations in Son			
Location	Description	Concentration	References
Ontario	Ontario Typical Range ^b - old urban parkland	OTR: ~7 to 110 μg/g mean: ~35 μg/g OTR ₉₈ : 98 μg/g	MOEE, 1994
Ontario	Ontario Typical Range ^b - rural parkland	OTR: ~7 to 75 μg/g mean: ~20 μg/g OTR ₉₈ : 45 μg/g	MOEE, 1994
Canada	uncultivated, uncontaminated soils, remote from ore bodies	mean: 20 ppm range: 5 to 50 ppm	McKeague and Wolynetz, 1980
Appalachians (Canada)	uncultivated, uncontaminated soils, remote from ore bodies, n=45	21 ppm	McKeague and Wolynetz, 1980
Canadian Shield	uncultivated, uncontaminated soils, remote from ore bodies, n=12	21	McKeague and Wolynetz, 1980
St. Lawrence Lowlands	uncultivated, uncontaminated soils, remote from ore bodies, n=40	25	McKeague and Wolynetz, 1980
Interior Plains (Canada)	uncultivated, uncontaminated soils, remote from ore bodies, n=34	15	McKeague and Wolynetz, 1980
Cordillerans (Canada)	uncultivated, uncontaminated soils, remote from ore bodies, n=19	16	McKeague and Wolynetz, 1980
Worldwide	average	16,000 µg/kg	Eisler, 1988c
Worldwide		10 mg/kg range: 2 to 200 mg/kg	Demayo et al., 1982

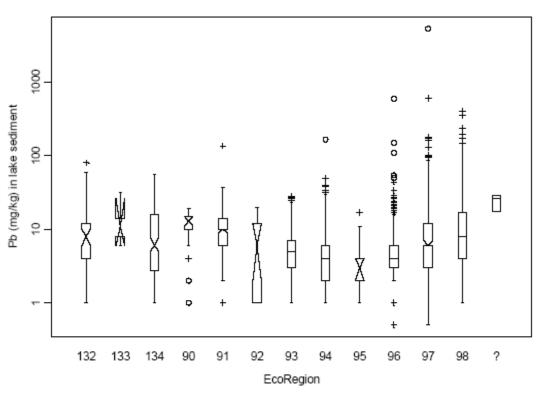
Table C.41	Ontario and Canadian Background Lead Concentrations in Soil

^a Value was derived from the Ontario Typical Range values and is representative of the upper limits of typical provincewide background concentrations in soils that are not contaminated by point sources.

^b Ontario Typical Ranges (OTRs) represent the expected range of concentrations of contaminants in surface soil from areas in Ontario not subjected to the influence of known point sources of emissions. The OTR₉₈ represents an upper limit of normal. OTR and mean values were estimated from graphs. These values apply to the land use and soil type in Ontario for which they were developed. The soil type is all soils except loamy sand, sand and soils with organic carbon content >17%.

Table C.42 Ontario and Canadian Background Lead Concentrations in Dust

Location	Description	Concentration	References
Ottawa	Household dust, n=50, collected winter 1993 from 10 Ottawa neighbourhoods	233 mg/kg	Rasmussen et al., 2001
Ottawa	Street dust, n=50, collected winter 1993 from 10 Ottawa neighbourhoods	33 mg/kg	Rasmussen et al., 2001
Toronto	House dust from a location not near to any point sources	845 mg/kg	Roberts et al., 1974


In the U.S., reported state mean background concentrations of lead in soil range from 5.0 mg/kg (Connecticut and South Carolina) to 39 mg/kg (Illinois) (U.S. EPA, 2003). Generic background concentrations of lead in soil based on soil type were compiled by Kabata-Pendias and Pendias (1985) and are presented as generic values that may be applied to any area of the U.S. (RAIS, 2004) (see Table C.43).

Soil Type	Range (ppm)	Mean (ppm)
Alluvial soils	10 to 30	18
Chernozems and dark prairie soils	10 to 70	19
Clay and clay-loamy soils	10 to 70	22
Forest soils	10 to 50	20
Lateritic soils	NA	NA
Light desert soils	10 to 70	23
Light loamy soils	<10 to 50	20
Loess and soils on silt deposits	10 to 30	19
Low Humic Gley soils and humus groundwater podzols	NA	NA
Organic light (or rich) soils	10 to 50	24
Sandy and lithosols on sandstone	NA	NA
Silty prairie soils	10 to 30	21
Soils on glacial till and drift	10 to 30	17
Soils on lacustrine deposits	NA	NA
Soils over granites and gneisses	10 to 50	21
Soils over limestones and calcareous rocks	10 to 50	22
Soils over volcanic rocks (or ash)	NA	NA
Various soils	<10 to 70	26
Western Alluvial soils	NA	NA

Table C.43Generic Background Concentrations of Lead in Soil by Soil Type (Kabata-
Pendias and Pendias, 1985)

Lead shows considerable variability in background levels in lake sediment; however, an estimated upper limit for background variation is approximately 20 to 50 mg/kg (Garrett, 2005). A plot of concentrations of lead in lake sediments is presented in Figure C-8 below, where the extent of the whiskers provides an estimate of background range for each EcoRegion that is not affected by outliers (+ near outlier; o far outlier) due to natural or anthropogenic processes. However, the whiskers can underestimate the full range of natural background when mineral occurrences are present in the region (Garrett, 2005). Reported background concentrations of lead in sediment are provided in Table C.44.

EcoRegions:

90 Lac Seul Upland, n = 41

91 Lake of the Woods, n = 2,118

- 92 Rainy River, n = 29
- 93 Thunder Bay-Quetico, n = 1,483
- 94 Lake Nipigon, n = 3,003
- 95 Big Trout Lake, n = 27
- 96 Abitibi Plains, n = 2,045

- Lake Timiskaming Lowland, n = 5,065
- 98 Algonquin-Lake Nipissing (includes Sudbury region), n = 4,279
- 132 St. Lawrence Lowlands, n = 71
- 133 Frontenac Axis, n = 10

97

?

- 134 Manitoulin-Lake Simcoe, n = 128
 - Unclassified, n = 3

Figure C-8 Tukey Boxplots, by EcoRegion in Ontario, of Lead in Sediment from Deep Centre-lake Basins, below the Surface Gyttja

Location	Description	Concentration	References
Lake Erie	surficial sediment samples collected 1997-1998	range: 4.4 to 104.3 mg.kg	Painter et al., 2001
Lake Erie, West Basin	pre-colonial background from deep sediments	13.2 mg/kg	Painter et al., 200
Lake Erie, Centre Basin	pre-colonial concentrations from deep sediments	22.7 mg/kg	Painter et al., 200
Lake Erie, East Basin	pre-colonial concentrations from deep sediments	18.6 mg/kg	Painter et al., 200
Lake Ontario	surficial sediment samples collected 1998	range: 5.2 to 196.6 mg/kg	Marvin et al., 200
Lake Ontario	pre-colonial background from deep sediments	15 mg/kg	Marvin et al., 200
Ontario	Background Site Condition Standard ^a	31 mg/kg	MOE, 2004
Worldwide	average	47,000 μg/kg	Eisler, 1988c

Table C 44 **Ontario and Canadian Background Lead Concentrations in Sediments**

C-4.2.4 **Background Concentrations in Biota and Foods**

Reported background concentrations of lead in fish, aquatic plants and terrestrial biota are provided in Tables C.45 to C.47 respectively.

Table C.45 **Ontario and Canadian Background Lead Concentrations in Fish** (Freshwater)

Location	Description	Concentration	References
U.S.	112 stations (ppm wet weight) from 1979 to 1981	geom. mean: 0.17 to 0.19 mg/kg ww range: 0.1 to 6.73 mg/kg ww	HSDB, 2000
U.S.	National Contaminant Biomonitoring Program for 1984 to 1985; 315 composite samples of whole fish from 109 stations nationwide	geom. mean: 0.11 max:4.88 85 th %ile: 0.22 (all in mg/kg ww)	HSDB, 2000
not specified	Fish and seafood	0.2 to 2.5 mg/kg	Schroeder and Balassa, 1961

Table C.46 **Ontario and Canadian Background Lead Concentrations in Aquatic Plants**

Location	Description	Concentration	References
Chesapeake Bay	Not specified	2.2 to 18.9 mg/kg dry weight	HSDB, 2000

Table C.47	Ontario and Canadian Background Lead Concentrations in Terrestrial
	Biota

Biota	Location	Description	Concentration (mg/kg ww)	Reference
Caribou	Northern Quebec	mean concentrations in tissues of 317 caribou harvested by Inuit hunters 1994 to 1996	muscle: 0.05 mg/kg kidneys: 0.26 mg/kg liver: 0.95 mg/kg	Robillard <i>et al.</i> , 2002
Woody plants	not near a point source	leaves and twigs	2.5 mg/kg	HSDB, 2000
Pasture grass	not near a point source		1.0 mg/kg	HSDB, 2000
Cereals	not near a point source		0.1 to 1.0 mg/kg	HSDB, 2000
Birds	not specified	livers of 28 species; no known lead exposure	0.3 to 7 mg/kg ww	HSDB, 2000

For multiple reasons, the concentration of lead in food has gradually declined over a number of years; therefore, older data should be interpreted with caution. Reported background concentrations of lead in Canadian foods are provided in Table C.48.

Table C.48T	ypical Lead Cor	centrations in Cana	dian Foods	
Food Type	Location	Description	Concentration (ng/g ww)	Reference
Fish and seafood			•	
Fish and shellfish	Canada	mean of 4 food composites	mean: 3.0	Dabeka and McKenzie, 2005 pers. comm.
Fish and shellfish	8 Canadian cities sampled in 1993 to 1999	137 food items	mean: 10.68 max: 20.69	HC, 2004a
Fish	5 Canadian cities sampled in 1986 to 1988	113 composites of 39 foods	mean: 19.3 max: 72.8	Dabeka and McKenzie, 1995
Fish	Canada, Ottawa/Hull region, Ottawa/Hull area	2 x 105 food composites sampled	mean: 21.2	Dabeka and McKenzie, 1992
Meat / poultry proc	lucts			
Meat, poultry and eggs	Canada sampled in 2000	mean of 14 food composites	mean: 5.2	Dabeka and McKenzie, 2005 pers. comm.
Meat, poultry and eggs	8 Canadian cities sampled in 1993 to 1999	137 food items	mean: 13.11 max: 35.33	НС, 2004а

Table C.48	Typical Lead	Concentrations i	in Cans	dian Food
1 anie 0.40	I VPICAL LEAU		ill Callà	iulali r'uuu

Food Type	Location	Description	Concentration (ng/g ww)	Reference
Meat and poultry	5 Canadian cities sampled in 1986 to 1988	113 composites of 39 foods	mean: 20.2 max: 523.4	Dabeka and McKenzie, 1995
Canned luncheon meat	5 Canadian cities sampled in 1986 to 1988		mean: 163	Dabeka and McKenzie, 1995
Meat and poultry	Canada, Ottawa/Hull region in 1985	2 x 105 food composites sampled	mean: 18.5	Dabeka and McKenzie, 1992
Milk and dairy pro	ducts			
Milk and milk products	Canada	mean of 12 food composites	mean: 2.8	Dabeka and McKenzie, 2005 pers. comm.
Milk and milk products	8 Canadian cities	137 food items	mean: 4.87 max: 14.22	НС, 2004а
Milk and milk products	5 Canadian cities sampled in 1986 to 1988	113 composites of 39 foods	mean: 7.7 max: 44.7	Dabeka and McKenzie, 1995
Milk and Dairy Products	Canada, Ottawa/Hull region in 1985	2 x 105 food composites sampled	mean: 6.58	Dabeka and McKenzie, 1992
Infant formula	Canada	mean of 2 food composites	mean: 1.6	Dabeka and McKenzie, 2005 pers. comm.
Infant formula	Canada	137 food items	mean: 3.7 max: 4.99	НС, 2004а
Infant formula (ready-to-use)	Canada	49 samples	mean: 1.58 max: 6.08	Dabeka, 1989
Infant formula (concentrated)	Canada	50 samples	mean: 3.67 max: 75.3	Dabeka, 1989
Infant formula (powdered)	Canada	64 samples	mean: 12.56 max: 57.3	Dabeka, 1989
Evaporated milk (lead-free solder)	Canada	8 samples	mean: 2.83 max: 5.17	Dabeka, 1989
Evaporated milk (lead-soldered)	Canada	13 samples	mean: 94.9 max: 300	Dabeka, 1989
Cereals, grains and	baked goods		1	9
Cereal/grain products and baked goods	Canada	mean of 21 food composites	mean: 7.5	Dabeka and McKenzie, 2005 pers. comm.
Cereals, grains and baked goods	8 Canadian cities	137 food items	mean: 11.94 max: 33.51	HC, 2004a
Bakery goods and cereals	5 Canadian cities sampled in 1986 to 1988	113 composites of 39 foods	mean: 13.7 max: 66.4	Dabeka and McKenzie, 1995

Table C.48 Typical Lead Concentrations in Canadian Foods

Food Type	Location	Description	Concentration (ng/g ww)	Reference
Bakery goods and cereals	Canada, Ottawa/Hull region in 1985	2 x 105 food composites sampled	mean: 23.5	Dabeka and McKenzie, 1992
Fruits and fruit jui	ces			
Fruit and fruit products	Canada	mean of 20 food composites	mean: 6.9	Dabeka and McKenzie, 2005 pers. comm.
Fruit and fruit Products	8 Canadian cities	137 food items	mean: 11.10 max: 63.97	HC, 2004a
Fruits and fruit juice	5 Canadian cities sampled in 1986 to 1988	113 composites of 39 foods	mean: 44.4 max: 372.7	Dabeka and McKenzie, 1995
Canned and raw cherries	5 Canadian cities sampled in 1986 to 1988		mean: 203	Dabeka and McKenzie, 1995
Canned citrus	5 Canadian cities sampled in 1986 to 1988		mean: 126	Dabeka and McKenzie, 1995
Fruits and fruit juices	Canada, Ottawa/Hull region in 1985	2 x 105 food composites sampled	mean: 60.7	Dabeka and McKenzie, 1992
Root vegetables				- -
Root vegetables	Canada	mean of 6 food composites	mean: 5.6	Dabeka and McKenzie, 2005 pers. comm.
Root vegetables	8 Canadian cities	137 food items	mean: 5.46 max: 9.41	HC, 2004a
Other vegetables				
Other vegetables	Canada	mean of 15 food composites	mean: 4.7	Dabeka and McKenzie, 2005 pers. comm.
Other vegetables	8 Canadian cities	137 food items	mean: 9.38 max: 35.65	HC, 2004a
Vegetables	5 Canadian cites sampled in 1986 to 1988	113 composites of 39 foods	mean: 24.4 max: 331.7	Dabeka and McKenzie, 1995
Canned beans	5 Canadian studies sampled in 1986 to 1988		mean: 158	Dabeka and McKenzie, 1995
Vegetables	Canada, Ottawa/Hull region in 1985	2 x 105 food composites sampled	mean: 29.3	Dabeka and McKenzie, 1992
Fats and oils	***			
Fats, oils and peanut butter	Canada	mean of 4 food composites	4.6	Dabeka and McKenzie, 2005 pers. comm.

Table C.48 Typical Lead Concentrations in Canadian Foods

Food Type	Location	Description	Concentration (ng/g ww)	Reference
Fats, oils and peanuts	8 Canadian cities	137 food items	mean: 18.20 max: 23.88	НС, 2004а
Fats and oils	5 Canadian cities sampled in 1986 to 1988	113 composites of 39 foods	mean: 9.6 max: 19.7	Dabeka and McKenzie, 1995
Fats and Oils	Canada, Ottawa/Hull region	2 x 105 food composites sampled in 1985 in Ottawa/Hull area	mean: 8.1	Dabeka and McKenzie, 1992
Sugars and sweets				
Sugar, candy and desserts	Canada	mean of 9 food composites	mean: 18.0	Dabeka and McKenzie, 2005 pers. comm.
Sugar, candy and desserts	8 Canadian cities	137 food items	mean: 8.17 max: 17.72	НС, 2004а
Sugar and candies	5 Canadian cites sampled in 1986 to 1988	113 composites of 39 foods	mean: 18.3 max: 111.6	Dabeka and McKenzie, 1995
Sugar and candies	Canada, Ottawa/Hull region in 1985	2 x 105 food composites sampled	mean: 32.8	Dabeka and McKenzie, 1992
Beverages			3	
Non-alcoholic drinks	Canada	mean of 4 food composites	mean: 1.5	Dabeka and McKenzie, 2005 pers. comm.
Alcoholic drinks	Canada	mean of 2 food composites	mean: 9.0	Dabeka and McKenzie, 2005 pers. comm.
Non-alcoholic drinks	8 Canadian cities	137 food items	mean: 1.64 max: 2.83	НС, 2004а
Alcoholic drinks	8 Canadian cities	137 food items	mean: 15.51 max: 29.46	HC, 2004a
Beverages	5 Canadian cites sampled in 1986 to 1988	113 composites of 39 foods	mean: 9.9 max: 88.8	Dabeka and McKenzie, 1995
Beverages	Canada, Ottawa/Hull region in 1985	2 x 105 food composites sampled	mean: 47.4	Dabeka and McKenzie, 1992
Other				
Miscellaneous	8 Canadian cities	137 food items	mean: 55.37 max: 704.48 (Frozen beef dinner)	HC, 2004a
Miscellaneous	5 Canadian cites sampled in 1986 to 1988	113 composites of 39 foods	mean: 41.7 max: 178.9	Dabeka and McKenzie, 1995

Table C.48 Typical Lead Concentrations in Canadian Foods
--

Table C.46 Typical Leau Concentrations in Canadian Foods				
Food Type	Location	Description	Concentration (ng/g ww)	Reference
Soups	5 Canadian cities sampled in 1986 to 1988	113 composites of 39 foods	mean: 15.5 max: 48.7	Dabeka and McKenzie, 1995
Soups	Canada, Ottawa/Hull region in 1985	2 x 105 food composites sampled	mean: 26.3	Dabeka and McKenzie, 1992

Table C.48	Typical Lead	Concentrations i	n Canadian	Foods
	I ypical Licau	Concentrations I		

C-4.3 Estimated Canadian Daily Intakes

C-4.3.1 Dietary Intake

Caution should be used in applying older dietary intake data to current situations for several reasons:

- Emissions and environmental concentrations of lead have decreased significantly following the phase-out and ban of sales of leaded gasoline for use in road vehicles (1990 in Canada, 1996 in the U.S.) (ATSDR, 1999; HC, 2004c);
- Insufficiently sensitive analyses were used to determine the lead content of Canadian foods prior to 1987 (Dabeka *et al.*, 1987); and,
- According to one study, the concentration of lead in canned foods purchased in Canada decreased significantly (by 38%) during the period of 1985 to 1988, and by 1988 virtually all canned foods packaged in Canada were packed in lead-free cans, but analysis of one food item from a lead-soldered can in an older study could contribute 0.31 µg/kg/d to estimates of dietary intake (HC, 2004c; Dabeka and McKenzie, 1995; Dabeka *et al.*, 1987).

Dabeka and McKenzie (1995) reported a 60% decrease in Canadians' intake of lead from foods between 1981 and 1986 to 1988. Reported dietary intakes of lead are provided in Table C.49.

Table C.49	Dietary Intake Rates	of Lead		
Species	Age and Gender Group	Intake Rate	Comments	Reference
Total lead	0 to 1 mo, MandF	0.445 µg/kg/d	Average daily	HC, 2004c
	2 to 3 mo, MandF	0.543 µg/kg/d	intakes of Canadians	
	4 to 6 mo, MandF	0.418 µg/kg/d	from the Total Diet	
	7 to 9 mo, MandF	0.454 µg/kg/d	Study 1993 to 1999.	
	10 to 12 mo, MandF	0.496 µg/kg/d	Studies were	
	1 to 4 yr, MandF	0.492 µg/kg/d	conducted in	
	5 to 11 yr, MandF	0.368 µg/kg/d	Montreal, Halifax,	

Table C.49	Dietary Intake Rate	s of Lead		
Species	Age and Gender Group	Intake Rate	Comments	Reference
	12 to 19 yr, F	0.198 µg/kg/d	Winnipeg,	
	12 to 19 yr, M	0.250 μg/kg/d	Vancouver, Ottawa	
	20 to 39 yr, F	0.185 µg/kg/d	and Toronto.	
	20 to 39 yr, M	0.223 μg/kg/d		
	40 to 65 yr, F	0.168 µg/kg/d		
	40 to 65 yr, M	0.205 µg/kg/d		
	65+ yr, F	0.144 µg/kg/d		
	65+ yr, M	0.162 µg/kg/d		
	all	0.189 µg/kg/d		
Total lead	0 to 1 yr	16.5 μg/d	intake from food and water	Dabeka and McKenzie, 1988
Total lead	adult	53.8 μg/d, or 0.80 μg/kg/d	24 hr duplicate diet study, 24 adults, 5 Cnd cities	Dabeka <i>et al.</i> , 1987
Total lead	1 to 4 yr	1.1 µg/kg/d		HC, 1992
Total lead	adult	0.75 µg/kg/d		HC, 1992
	1 to 4 yr, MandF	15 μg/d		
	5 to 11 yr, MandF	20 µg/d		
	12 to 19 yr, F	21 µg/d		
	12 to 19 yr, M	26 µg/d	food itsms much soud	
	20 to 39 yr, F	24 µg/d	food items purchased in 5 Canadian cities	Dabeka and
Total lead	20 to 39 yr, M	33 μg/d	between 1984 and	McKenzie, 1995
	40 to 65 yr, F	23 μg/d	1986	
	40 to 65 yr, M	30 μg/d	1980	
	65+ yr, F	20 µg/d		
	65+ yr, M	24 μg/d		
	all	24 μg/d		
			estimated intake from drinking water, based on a Pb	
Inorganic lead		child: 2.9 μg/d adult: 7.2 μg/d	concentration of 4.8 µg/L and daily water intakes of 0.6 L and 1.5 L (child and	HC, 1992
			adult, respectively)	

C-4.3.2 Relative Contributions of Exposure Pathways to Total Exposure

ATSDR (1999) stated that exposure of the general population to lead is most likely to occur through ingestion of contaminated food and drinking water, and by the inhalation of lead particulates in ambient air, with inhalation accounting for only a small portion of total exposure. The CDC (2001) concluded that the most common source of lead exposure for children is deteriorated lead paint, while the most common source for adults is occupational exposure.

The estimated daily intake of inorganic lead from air alone is $0.36 \ \mu g/d$ and $1.2 \ \mu g/d$ for a Canadian twoyear old and adult, respectively (HC, 1992). The total daily intake from air, water, food, dust and dirt combined is 29.5 $\mu g/d$ and 63.7 $\mu g/d$ for a Canadian two-year old and adult, respectively (HC, 1992).

The Windsor Air Quality Study found the following breakdown of inhalation exposure to trace metals: 60% from indoor air in the home, 18% from air in the office, and 22% from outdoor air (exposure while commuting was not considered) (Bell *et al.*, 1994).

C-4.4 Indices of Human Exposure

Reported background concentrations of lead in various human tissues and fluids are provided in Table C.50.

Table C.50	Background	Lead Concentrations in	n Human Biological Tissue	s and Fluids
Tissue or Fluid Type	Location	Description	Concentration	References
Blood	not specified	families of non-exposed workers	6.2 LTC/dL	Kaye <i>et al.</i> , 1987
Blood	general	blood lead level considered elevated in children under 6	10 µg/dL	CDC, 2001
Blood	U.S.	1 yr and older, geometric mean (n = 3,189)	1.6 µg/dL	CDC, 2001
Blood	U.S.	1 to 5 yr, geometric mean $(n = 254)$	2.0 µg/dL	CDC, 2001
Blood	U.S.	6 to 11 yr, geometric mean $(n = 419)$	1.3 µg/dL	CDC, 2001
Blood	U.S.	12 to 19 yr, geometric mean $(n = 868)$	1.0 µg/dL	CDC, 2001
Blood	U.S.	20 to 39 yr, geometric mean $(n = 595)$	1.4 µg/dL	CDC, 2001
Blood	U.S.	40 to 59 yr, geometric mean $(n = 471)$	1.9 µg/dL	CDC, 2001
Blood	U.S.	60+ yr, geometric mean (n = 582)	2.5 µg/dL	CDC, 2001
Breast milk	Canada	210 human milk samples	mean: 1.04 μg/kg range: <0.05 - 15.8 μg/kg geom. mean: 0.566 μg/kg median: 0.55 μg/kg	Dabeka <i>et al.</i> , 1988
Breast milk	Newfoundland	samples from 1 st 3 months of lactation from mothers of premature (n=24) and full-term (n=19) babies, btw 1988 and 1993	range: 0 to 4 µg/L	Friel <i>et al.</i> , 1999
Breast milk	not specified		12 ug/L and $< 5 ug/L$	HSDB, 2000

1 able C.5V Background Lead Concentrations in Human biological Lissues and Flu	Table C.50	Background Lead Concentrations in Human Biological Tissues and Fluids	
--	------------	---	--

Table C.50	Background Lead Concentrations in Human Biological Tissues and Fluids			
Tissue or Fluid Type	Location	Description	Concentration	References
Brain cortex	not specified	50 adult males	mean: 0.1 mg/kg wet wt range: 0.02 to 0.8 mg/kg;	HSDB, 2000
Basal ganglia	not specified	50 adult males	range: 0.04 to 0.2 mg/kg.	HSDB, 2000
Body burden	U.S.	average adult in the U.S.	not less than 100 mg and not more than 300 mg	HSDB, 2000

C-5.0 NICKEL BACKGROUND EXPOSURE

C-5.1 Sources and Environmental Fate

C-5.1.1 Sources

Natural sources of nickel emissions to air are soil dust, sea salt, forest fires and particulate exudates from vegetation (CEPA, 1994). During Canadian summers, soil dust and vegetation are the predominant natural sources of nickel, except in coastal areas where sea spray may be more important (EC/HC, 1994). Anthropogenic emissions of nickel exceed natural emissions (ATSDR, 2003a; Nriagu and Pacyna, 1988). The largest anthropogenic sources of nickel are fossil fuel combustion, nickel mining and smelting, but virtually every industry will emit heavy metals, including nickel, in high temperature processes (McGrath, 1995; Wilson *et al.*, 1998).

C-5.1.2 Environmental Fate and Speciation in Environmental Media

Very little quantitative information on the speciation of nickel in environmental media is available (CCME, 2004). Nickel concentrations are generally reported as total nickel (CCME, 2004).

C-5.1.2.1 Atmosphere

The form of nickel emitted depends on the source. Emissions of nickel from smelting operations and fossil fuel combustion are predominantly in the form of nickel sulphate, subsulphide and oxide (Gilman and Ruckerbauer, 1962; Henry and Knapp, 1980). Nickel species associated with combustion, incineration, smelting and refining are complex nickel oxides, nickel sulphate and metallic nickel (U.S. EPA, 1985a). Nickel emitted from more specialized industries is commonly in the forms of nickel silicate, nickel subsulphide and nickel chloride (U.S. EPA, 1985a). Nickel of anthropogenic origins is reported to enter the atmosphere as particulate matter in the 0.1 to 2 μ m size range, while nickel from natural sources has a larger size, 2 to 10 μ m (Beijer and Jernelov, 1986). The species of nickel which are probably present in the atmosphere are soil minerals, nickel oxide and nickel sulphate (Schmidt and Andren, 1980).

Due to the generally small size of the particulate matter, nickel has a relatively long atmospheric residence time. Schmidt and Andren (1980) estimated a residence time of five to eight days, and Schroeder *et al.* (1987) estimated an atmospheric half life for submicron particles of as long as 30 days. Monitoring data show that nickel can be transported far from its source (Pacyna and Ottar, 1985).

C-5.1.2.2 Surface Water and Groundwater

Concentrations of nickel in surface waters are generally low (ATSDR, 2003a). In aerobic waters at environmental pH, the dominant form of nickel is the hexahydrate Ni((H₂O)₆²⁺ ion (Richter and Theis, 1980). Above pH 9.5, Ni(OH)₂⁰ is the dominant species (ATSDR, 2003a). A small proportion of nickel forms complexes with anions, such as OH⁻, SO₄²⁻, and Cl⁻ (ATSDR, 2003a). Nickel is mobile in natural waters in both aqueous and particulate forms (CCME, 2004). The factors affecting the fate, transport and bioavailability of nickel in natural waters are pH, redox potential, ionic strength, type and concentration of organic and inorganic ligands, and the presence of solid surfaces for adsorption (Semkin, 1975; Callahan *et al.*, 1979; Snodgrass, 1980). Lowering the pH or increasing the concentrations of organic ligands may result in desorption of nickel from sediment or suspended particulates into the water column (Callahan *et al.*, 1979). Data suggest that very little nickel is present in Canadian lakes in suspended solids (CCME, 2004).

C-5.1.2.3 Soils and Sediments

In soils, over 50% of the nickel present may be associated with the residual fraction, approximately 20% may be associated with iron and manganese oxides, most of the remainder is bound up with the carbonate fraction, and only minimal amounts are associated with the exchangeable and organic fractions (Hickey and Kittrick, 1984; McGrath, 1995). The adsorption of nickel to soil is affected by site-specific factors including pH, soil texture, bulk density, organic matter, clay minerals, hydroxides and groundwater flow; but the primary factor determining the distribution of nickel between the solid and solution phases of soil is pH (ATSDR, 2003a; Sunderman and Oskarsson, 1988). Most soils have a high affinity for nickel, and once it is sorbed, it is difficult to desorb (Bowman *et al.*, 1981); however, at pH values below 6.5, solubility is increased, nickel is mobilized and concentrations in pore water increase (Sunderman and Oskarsson, 1988). Nickel in sediment may be either strongly bound or in a removable form (ATSDR, 2003a).

C-5.1.2.4 Biota and Foods

The available data do not suggest biomagnification of nickel in freshwater or terrestrial food chains, despite the fact that algae, macrophytes and some terrestrial plants accumulate nickel (CCME, 2004; ATSDR, 2003a).

Nickel can be detected in most foods. In general, nuts, oatmeal, chocolate, legumes, and grains and grain products are high in nickel concentrations (ATSDR, 2003a). In particular, nickel has been found in high concentrations in peanuts, peanut butter and other nuts (*e.g.*, JWEL, 2004; Dabeka and McKenzie, 1995).

C-5.2 Background Exposure Concentrations in Ontario and Canada

C-5.2.1 Background Concentrations in Air

Reported background concentrations of nickel in air are provided in Table C.51.

Location	Description	Concentration	References
Ontario	mean concentration in 1,410 samples of PM10 collected from 27 stations in cities and towns across Ontario in 2001	6.2 ng/m ³	MOE, 2002
Canada (rural)	annual arithmetic means of PM2.5 samples from 38 urban stations across Canada, 1994-2004	range: nd to 0.00690 μ g/m ³ mean: 0.00109 μ g/m ³	Dann, 2005 pers. comm.
Canada (urban)	annual arithmetic means of PM2.5 samples from 8 rural stations across Canada, 1994-2004	range: nd to 0.408 μg/m ³ mean: 0.00197 μg/m ³	Dann, 2005 pers. comm.
Canada	background concentration for both PM10 and PM2.5	4 ng/m ³	CCME, 2004
Canada (urban)	median PM10 concentrations from 11 urban stations across Canada, 1986 to 1993	range: non-detect to 0.020 $\mu g/m^3$	CEPA/FPAC WGAQOG, 1999
Windsor, Ontario	indoor (home and office) samples of personal air taken 1991-1992	range: 0.3 to 9.3 ng/m ³ mean: 1.2 ng/m ³	Bell et al., 1994
Windsor, Ontario	outdoor (residential and commercial neighbourhoods) samples of personal air taken 1991-1992	range: 0.4 to 8.7 ng/m ³ mean: 2.1 ng/m ³	Bell et al., 1994
Windsor, Ontario	6 samples of ambient air taken in 1992	range: 1.1 to 7.2 ng/m ³ mean: 3.0 ng/m ³	Bell et al., 1994
British Columbia	mean from 3 stations between 1995 and 1998	mean: 0.724 ng/m^3 range: 0 to 10.9 ng/m ³	Dryfhout-Clark, 2004, pers comm

Table C.51 Ontario and Canadian Background Nickel Concentrations in Air

C-5.2.2 Background Concentrations in Surface Water and Groundwater

Reported background concentrations of nickel in surface water, groundwater, and drinking water are provided in Table C.52 to C.54, respectively. Background concentrations of nickel in precipitation were not found.

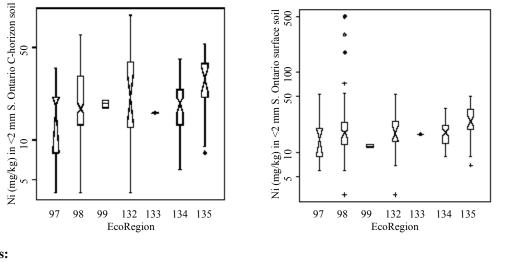
	vv ater		
Location	Description	Concentration	References
Ontario	Mean levels in raw lake water from 90 sampling pts for 82 Ontario water works	range: nd to 150.0 μg/L mean: 2.09 μg/L	Clubb, 2005 pers. comm.
Ontario	Mean levels in raw river water from 51 sampling pts for 46 Ontario water works	range: nd to 99.0 μg/L mean: 1.34 μg/L	Clubb, 2005 pers. comm.
Great Lakes	baseline data (not background)	0.76 to 0.88 µg/L	Chapman and Wang, 2000
Canada	representative background concentration for Canadian Shield- type lakes	1.8 μg/L	Doyle et al., 2003
Ontario	19 samples from 6 reference sites between 1998 and 2003, selected to represent ambient concentrations	range: <1 to 4 μg/L mean: 1 μg/L	Boyd, 2004 pers. comm.

 Table C.52
 Ontario and Canadian Background Nickel Concentrations in Fresh Surface

 Water
 Value

Table C.53 Ontario and Canadian Background Nickel Concentrations in Groundwater

Location	Description	Concentration	References
Ontario	Mean levels in raw ground water from 61 sampling pts for 55 Ontario water works	range: nd to 34.0 µg/L mean: 1.09 µg/L	Clubb, 2005 pers. comm.
Ontario	Background Site Condition Standards ^a	25 μg/L	MOE, 2004
	selected for the Standard is within the range of means of Program, and is considered generally achievable		



	Water		0
Location	Description	Concentration	References
Ontario	Mean levels in drinking water from 89 sampling pts in the distribution systems of 54 Ontario water works drawing groundwater	range: nd to 347.0 μg/L mean: 1.76 μg/L	Clubb, 2005 pers. comm.
Ontario	Mean levels in drinking water from 82 sampling pts in the distribution systems of 160 Ontario water works drawing lake water	range: nd to 6,100.0 µg/L mean: 6.01µg/L	Clubb, 2005 pers. comm.
Ontario	Mean levels in drinking water from 90 sampling pts in the distribution systems of 50 Ontario water works drawing river water	range: nd to 1,150.0 µg/L mean: 2.97 µg/L	Clubb, 2005 pers. comm.

Table C.54	Ontario and Canadian Background Nickel Concentrations in Drinking
	Water

C-5.2.3 Background Concentrations in Soils and Sediment

Concentrations of nickel in soils from across Southern Ontario are plotted in Figure C-9, where the extent of the whiskers provides an estimate of background range for each Ecoregion that is not affected by outliers (+ near outlier; o far outlier) due to natural or anthropogenic processes (Garrett, 2005). Reported background concentrations of nickel in soil and dust are provided in Tables C.55 and C.56, respectively.

Ecoregions:

- 97 Lake Timiskaming Lowland, n = 17
- 98 Algonquin-Lake Nipissing (includes Sudbury region), n = 112
- 99 Southern Laurentians, n = 3
- 132 St. Lawrence Lowlands, n = 30

133 Frontenac Axis, n = 1
134 Manitoulin-Lake Simcoe, n = 89
135 Lake Erie Lowlands, n = 42

Figure C-9 Tukey Boxplots, by Ecoregion in Southern Ontario, of Nickel in C-horizon (70-100 cm) and Surface (top 25 cm) Soils

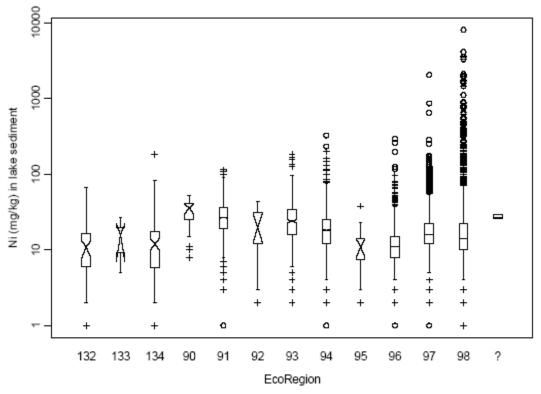
Table C.55 Ontario and Canadian Background Nickel Concentrations in Soil				
Location	Description	Concentration	References	
Ottawa	garden soil, n=50, collected winter 1993 from 10 Ottawa neighbourhoods	15.9 mg/kg	Rasmussen <i>et al.</i> , 2001	
Ontario	upper-limit of background ^a	43 mg/kg (agricultural land use) 43 mg/kg (all other land uses)	MOE, 2004	
Ontario	Ontario Typical Range ^b - old urban parkland	OTR: ~5 to 35 mg/kg mean: ~15 mg/kg OTR ₉₈ : 32 mg/kg	MOEE, 1994	
Ontario	Ontario Typical Range ^b - rural parkland	OTR: ~3 to 55 mg/kg mean: ~15 mg/kg OTR ₉₈ : 38 mg/kg	MOEE, 1994	
Canada	uncultivated, uncontaminated soils, remote from ore bodies	range: 5 to 50 mg/kg mean: 20 mg/kg	McKeague and Wolynetz, 1980	
Appalachians (Canada)	uncultivated, uncontaminated soils, remote from ore bodies, n=45	18 mg/kg	McKeague and Wolynetz, 1980	
Canadian Shield	uncultivated, uncontaminated soils, remote from ore bodies, n=12	12 mg/kg	McKeague and Wolynetz, 1980	
St. Lawrence Lowlands	uncultivated, uncontaminated soils, remote from ore bodies, n=40	18 mg/kg	McKeague and Wolynetz, 1980	
Interior Plains (Canada)	uncultivated, uncontaminated soils, remote from ore bodies, n=34	18 mg/kg	McKeague and Wolynetz, 1980	
Cordillerans (Canada)	uncultivated, uncontaminated soils, remote from ore bodies, n=19	40 mg/kg	McKeague and Wolynetz, 1980	
Central and Southern Ontario	total nickel in 296 A horizon samples	mean: 24.98 μg/g range: 3 to 500 μg/g	Sharpe and Rasmussen, 1996	
Central and Southern Ontario	total nickel in 296 C horizon samples	mean: 22.34 µg/g range: 4 to 87 µg/g	Sharpe and Rasmussen, 1996	
Ottawa area	total nickel in 19 samples from 2 agricultural fields at depths of 0 to 20 cm	mean: 36 µg/g range: 26 to 46 µg/g	Wang, 2004	
Ottawa area	total nickel in 20 samples from 2 agricultural fields at depths of 50 to 65 cm	mean: 72 μg/g range: 54 to 87 μg/g	Wang, 2004	

^a Value was derived from the Ontario Typical Range values and is representative of tge upper limits of typical province-wide background concentrations in soils that are not contaminated by point sources.

^b Ontario Typical Ranges (OTRs) represent the expected range of concentrations of contaminants in surface soil from areas in Ontario not subjected to the influence of known point sources of emissions. The OTR₉₈ represents an upper limit of normal. OTR and mean values were estimated from graphs. These values apply to the land use and soil type in Ontario for which they were developed. The soil type is all soils except loamy sand, sand and soils with organic carbon content >17%.

Table C.56 Ontario and Canadian Background Nickel Concentrations in Dust

Location	Description	Concentration	References
Ottawa	household dust, n=50, collected winter 1993 from 10 Ottawa neighbourhoods	53.6 mg/kg	Rasmussen et al., 2001
Ottawa	street dust, n=50, collected winter 1993 from 10 Ottawa neighbourhoods	14.8 mg/kg	Rasmussen et al., 2001


The U.S. EPA (2003) compiled mean background concentrations of nickel in soil for each state, and reported values ranging from 3.8 mg/kg dry weight in New Jersey to 48 mg/kg dry weight in California. Generic background concentrations of nickel in soil based on soil type were compiled by Kabata-Pendias and Pendias (1985) and are presented as generic values that may be applied to any area of the U.S. (RAIS, 2004) (see Table C.57).

Soil Type	Range (ppm)	Mean (ppm)
Alluvial soils	7 to 50	19.0
Chernozems and dark prairie soils	7 to 70	19.5
Clay and clay-loamy soils	5 to 50	20.5
Forest soils	7 to 100	22.0
Lateritic soils		
Light desert soils	7 to 150	22.0
Light loamy soils	5 to 200	22.0
Loess and soils on silt deposits	5 to 30	17.0
Low Humic Gley soils and humus groundwater podzols		
Organic light (or rich) soils	5 to 50	12.0
Sandy and lithosols on sandstone		
Silty prairie soils	<5 to 50	16.0
Soils on glacial till and drift	10 to 30	18.0
Soils on lacustrine deposits		
Soils over granites and gneisses	<5 to 50	18.5
Soils over limestones and calcareous rocks	<5 to 70	18.0
Soils over volcanic rocks (or ash)	,	
Various soils	<5 to 150	18.5
Western Alluvial soils		

Table C.57Generic Background Concentrations of Nickel in Soil by Soil Type
(Kabata-Pendias and Pendias, 1985)

An estimated upper limit for background variation in nickel levels in lake sediment is approximately 80 to 90 mg/kg (Garrett, 2005). Concentrations of nickel in sediments from lakes across Ontario are plotted in Figure C-10, where the extent of the whiskers provides an estimate of background range for each EcoRegion that is not affected by outliers (+ near outlier; o far outlier) due to natural or anthropogenic processes; however it underestimates the full range of natural background when mineral occurrences are present in the region (Garrett, 2005). Reported background concentrations of nickel in sediment are provided in Table C.58.

EcoRegions:

- Lac Seul Upland, n = 4190
- 91 Lake of the Woods, n = 2,118
- 92 Rainy River, n = 29
- 93 Thunder Bay-Quetico, n = 1,483
- 94 Lake Nipigon, n = 3,003
- 95 Big Trout Lake, n = 27
- 96 Abitibi Plains, n = 2,045

- Lake Timiskaming Lowland, n = 5,065
- 98 Algonquin-Lake Nipissing (includes Sudbury region), n = 4,279
- St. Lawrence Lowlands, n = 71132
- Frontenac Axis, n = 10133

97

- Manitoulin-Lake Simcoe, n = 128134 ?
 - Unclassified, n = 3

Figure C-10 Tukey Boxplots, by EcoRegion in Ontario, of Nickel in Sediment from Deep Centre-lake Basins, below the Surface Gyttja

Table C.58	Ontario and Canadian Background Nickel Concentrations in Sediments				
Location	Description	Concentration	References		
Lake Ontario	surficial sediments sampled in 1998	range: 7.5 to 100.2 mg/kg	Marvin et al., 2003		
Lake Ontario	pre-colonial background from deep sediments	43 mg/kg	Marvin et al., 2003		
Lake Erie	surficial sediments, sampled in 1997 to 1998	range: 7.9 to 63.5 mg/kg	Painter et al., 2001		
Lake Erie, West Basin	pre-colonial background from deep sediments	27.6 mg/kg	Painter et al., 2001		
Lake Erie, Centre Basin	pre-colonial background from deep sediments	45.9 mg/kg	Painter et al., 2001		
Lake Erie, East Basin	pre-colonial background from deep sediments	35.5 mg/kg	Painter et al., 2001		
Ontario	Background Site Condition Standard	16 mg/kg	MOE, 2004		
Lake Ontario	background sediments	42 to 48 μg/g	Murdoch et al., 1988		
Lake Erie	background sediments	10 to 76 μg/g	Murdoch et al., 1988		
Lake Huron	background sediments	30 to 51 μg/g	Murdoch et al., 1988		
Lake Michigan	background sediments	20 μg/g	Murdoch et al., 1988		
Lake Superior	background sediments	24 to 70 μg/g	Murdoch et al., 1988		
Canada	background concentrations based on 70,000 samples collected over 20 years	range: 5 to 50 µg/g median: 15 µg/g	Friske, 1993		

Table C.58 Ontario and Canadian Background Nickel Concentrations in Sediments

C-5.2.4 Background Concentrations in Biota and Foods

Reported background concentrations of nickel in fish are provided in Tables C.59. Background concentrations for other aquatic biota, aquatic plants and terrestrial biota were not found.

Table C.59	Ontario and Canadian Background Nickel Concentrations in Fish
	(Freshwater)

Location	Description	Concentration	References
Lake Erie (Wheatley and Port Stanley)	15 walleye collected in 1996	non-detect (DL = 0.02 mg/kg) in the majority of samples	Trivedi, 2004 pers. comm.
Lake Huron (French River)	20 walleye collected 1995 to 1996	0.052 mg/kg	Trivedi, 2004 pers. comm.
Lake Ontario (Bay of Quinte-Lennox)	42 walleye collected 1995 to 2002	non-detect (DL = 0.02 or 0.05 mg/kg) in the majority of samples	Trivedi, 2004 pers. comm.

Reported background concentrations of total nickel in Canadian foods are provided in Table C.60.

Food Type	Location	Description	Concentration (ng/g ww)	Reference
Fish and seafood	÷			:
Fish and shellfish	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 37	JWEL, 2004
Fish	Canada, Montreal between 1986 and 1988	6 samples purchased	mean: 125 ^a max: 232 ^a	Dabeka and McKenzie, 199
Fish and shellfish	1991 to 2002 Over 36 Cities across US	6459 total food samples	mean: 40 max: 105	U.S. FDA, 2004
Meat / poultry proc	lucts			
Meat, poultry and eggs (w/ organ meats)	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 14.5 max: 31	JWEL, 2004
Meat, poultry and eggs (w/out organ meats	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 15.7 max: 31.0	JWEL, 2004
Meat and poultry	Canada, Montreal between 1986 and 1988	18 samples purchased	mean: 385 ^a max: 2,521 ^a	Dabeka and McKenzie, 199:
Meat, poultry and eggs	1991 to 2002 Over 36 Cities across US	6,459 total food samples	mean: 39 max: 116	U.S. FDA, 2004
Organ meats	1991 to 2002 Over 36 Cities across US	6,459 total food samples	mean: 1	U.S. FDA, 2004
Meat, fish and poultry	Canada, Winnipeg area in 1972	foods purchased	240	Kirkpatrick and Coffin, 1977
Milk and dairy pro	ducts			
Milk and milk products	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 20.5 max: 91	JWEL, 2004
Milk and milk products	Canada, Montreal between 1986 and 1988	13 samples purchased	mean: 63 ^a max: 323 ^a	Dabeka and McKenzie, 1995
Milk and milk products	1991 to 2002 Over 36 Cities across US	6,459 total food samples	mean: 15 max: 101 (chocolate shake)	U.S. FDA, 2004
Milk and dairy	Canada, Winnipeg area in 1972	foods purchased	90	Kirkpatrick and Coffin, 1977

Typical Total Nickal Co Table C 60 .tr otic in Co dian Food

Food Type	pe Location Description		Concentration (ng/g ww)	Reference	
Infant formula	:	: :		÷	
Milk based	Canada	ready to use	5.8 to 28.9 μg/L	Dabeka, 1989	
Soy based	Canada	ready to use	31.2 to 187 μg/L	Dabeka, 1989	
Infant formula	1991 to 2002 Over 36 Cities across U.S.	6,459 total food samples	mean: 11 max: 23	U.S. FDA, 2004	
Cereals, grains and	baked goods				
Cereals, grains and baked goods	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 106 ^a max: 320	JWEL, 2004	
Bakery goods and cereals	Canada, Montreal between 1986 and 1988	24 samples purchased	mean: 256 ^a max: 1,273 ^a	Dabeka and McKenzie, 1995	
Cereals, grains and baked goods	1991 to 2002 Over 36 Cities across U.S.	6459 total food samples	mean: 243 max: 2.270 (oat ring cereal)	U.S. FDA, 2004	
Cereals	Canada, Winnipeg area in 1972	foods purchased	330	Kirkpatrick and Coffin, 1977	
Fruits and fruit juic	es				
Fruits and fruit juices	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 30.9 ^a max: 130	JWEL, 2004	
Fruits and fruit juices	Canada, Montreal between 1986 and 1988	25 samples purchased	mean: 123 ^a max: 505 ^a	Dabeka and McKenzie, 1995	
Fruits and fruit juices	1991-2002 Over 36 Cities across U.S.	6459 total food samples	mean: 85 max: 423	U.S. FDA, 2004	
Garden fruits	Canada, Winnipeg area in 1972	foods purchased	540	Kirkpatrick and Coffin, 1977	
Fruits	Canada, Winnipeg area in 1972	foods purchased	150	Kirkpatrick and Coffin, 1977	
Root vegetables					
Potatoes	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 75 ^ª	JWEL, 2004	
Root vegetables	1991-2002 Over 36 Cities across U.S.	6,459 total food samples	mean: 91 max: 224	U.S. FDA, 2004	

Table C.60 Typical Total Nickel Concentrations in Canadian Foods				
Food Type	Location	Description	Concentration (ng/g ww)	Reference
Potatoes	Canada, Winnipeg area in 1972	foods purchased	180	Kirkpatrick and Coffin, 1977
Root vegetables	Canada, Winnipeg area in 1972	foods purchased	220	Kirkpatrick and Coffin, 1977
Other vegetables			-	
Other vegetables	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 173 ^a max: 430	JWEL, 2004
All vegetables	Canada, Montreal between 1986 and 1988	38 samples purchased	mean: 195 ^a max: 982 ^a	Dabeka and McKenzie, 1995
Other vegetables	1991 to 2002 Over 36 Cities across U.S.	6,459 total food samples	mean: 145 max: 698	U.S. FDA, 2004
Garden vegetables	Canada, 1 rural garden in Fredericton, NB	lettuce, beet tops, carrots and potatoes sampled means: 500 to 1,500 (dw)		Pilgrim and Schroeder, 1997
Garden vegetables	Canada, 9 urban gardens in 2 New Brunswick cities	beet tops sampled	means: 1,200 to 3,100 (dw)	Pilgrim and Schroeder, 1997
Radishes	Canada, rural gardens in N. Manitoba	sampled	500 to 700	Yee, 2004
Garden produce	Canada, rural gardens in N. Manitoba	potatoes, carrots, turnips, strawberries, blueberries and mossberries sampled	<100	Yee, 2004
Leafy vegetables	Canada, Winnipeg area in 1972	foods purchased	190	Kirkpatrick and Coffin, 1977
Legumes	Canada, Winnipeg area in 1972	foods purchased	500	Kirkpatrick and Coffin, 1977

Food Type	Location Description		Concentration (ng/g ww)	Reference
Mixed foods	•			
Soups	Canada, Montreal between 1986 and 1988	4 samples purchased	mean: 291 ^a max: 689 ^a	Dabeka and McKenzie, 1995
Miscellaneous	Canada, Montreal between 1986 and 1988	7 samples purchased	mean: 101 ^a max: 213 ^a	Dabeka and McKenzie, 1995
Mixed foods and soups	1991 to 2002 Over 36 Cities across U.S.	6,459 total food samples	mean: 131 max: 213	U.S. FDA, 2004
Fats and oils				
Fats and oils	Port Colborne	186 food samples (includes replicates and duplicates)	Range: 15 to 57	JWEL, 2004
Nuts and seeds	Port Colborne	186 food samples (includes replicates and duplicates)	Range: 31 to 2,000	JWEL, 2004
Fats and oils	Canada, Montreal between 1986 and 1988	3 samples purchased	mean: 566 ^a max: 1,467 ^a	Dabeka and McKenzie, 1995
Fats and oils	1991 to 2002 Over 36 Cities across U.S.	6,459 total food samples	mean: 27 max: 91	U.S. FDA, 2004
Nuts	1991 to 2002 Over 36 Cities across U.S.	6,459 total food samples	mean: 1,449 max: 3,030	U.S. FDA, 2004
Fats and oils	Canada, Winnipeg area in 1972	foods purchased	1,500	Kirkpatrick and Coffin, 1977
Sugars and sweets				
Sugars and Sweets	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 107 ^a max: 310 (candy)	JWEL, 2004
Sugar and candies	Canada, Montreal between 1986 and 1988	7 samples purchased	mean: 143 ^a max: 577 ^a	Dabeka and McKenzie, 1995
Sugars and sweets	1991 to 2002 Over 36 Cities across U.S.	6,459 total food samples	mean: 174 max: 979	U.S. FDA, 2004
Sugars	Canada, Winnipeg area in 1972	foods purchased	300	Kirkpatrick and Coffin, 1977

Food Type Location		Description	Concentration (ng/g ww)	Reference			
Beverages							
Alcoholic beverages	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 11.5 ^a	JWEL, 2004			
Non-alcoholic beverages	Port Colborne	186 food samples (includes replicates and duplicates)	mean: 6.0 ^a	JWEL, 2004			
Beverages	Canada, Montreal between 1986 and 1988	7 samples purchased	mean: 16 ^a max: 52 ^a	Dabeka and McKenzie, 1995			
Alcoholic beverages	1991 to 2002 Over 36 Cities across U.S.	6,459 total food samples	mean: 8 max: 25	U.S. FDA, 2004			
Non-alcoholic beverages	1991 to 2002 Over 36 Cities across U.S.	6,459 total food samples	mean: 10 max: 39	U.S. FDA, 2004			
Drinks	Canada, Winnipeg area in 1972	foods purchased	140	Kirkpatrick and Coffin, 1977			

. 1 1.1 0.0

Stainless steel cookware was used extensively in the preparation and cooking of samples, and may have contributed to the reported nickel concentrations.

C-5.3 **Estimated Canadian Daily Intakes**

C-5.3.1 **Dietary Intake**

There is evidence that nickel may leach from new steel cooking pots and utensils during preparation of acidic foods (IARC, 1990), which may lead to increased nickel intake while the steel item is new. Concern has been expressed (*i.e.*, JWEL, 2004) with the interpretation of the nickel concentrations in the food analyzed in the Canadian Total Food Study (i.e., Dabeka and McKenzie, 1995). The food samples were prepared using new stainless steel frying and roasting pans. Food was analyzed before and after cooking and the results indicated that significant nickel contamination occurred, particularly by roasting some of the meat samples (Dabeka and McKenzie, 1995). Jacques Whitford (JWEL, 2004) conducted an extensive literature review and a series of experiments to explore the role of cooking with stainless steel utensils on the leaching of nickel into food samples. Their review revealed that significant nickel is leached during cooking; however, this contamination decreases to negligible amounts after the first few uses of the utensil (JWEL, 2004). They also conducted a screening-level cooking study with a well-used

stainless steel frying pan and ceramic pan. This study demonstrated that the foods were not contaminated by nickel during normal preparation and cooking (use of "well used" stainless steel pan) (JWEL, 2004). Thus, they concluded that contamination of the food items in the Dabeka and McKenzie (1995) study does not appropriately characterize the long term contribution of nickel to the general public from cooking using stainless steel utensils. Reported dietary intakes of nickel are provided in Table C.61.

Table C.61 Dietary Intake Rates of Nickel				
Gender	Age	Intake Rate	Comments	Reference
Both	All	4.4 to 22.1 μg/kg/d	intake range for the general population, intake for infants greater than for adults	CEPA, 1994
Both	All	153 μg/d	dietary exposure of 176 participants in the NHEXAS Arizona study	O'Rourke et al., 1999
Male	>18 y	163 µg/d	dietary exposure of 55 participants in the NHEXAS Arizona study	O'Rourke et al., 1999
Female	>18 y	157 μg/d	dietary exposure of 86 participants in the NHEXAS Arizona study	O'Rourke et al., 1999
Both	<18 y	125 µg/d	dietary exposure of 35 participants in the NHEXAS Arizona study	O'Rourke et al., 1999
Both	All	0.374 µg/kg/d	intake rate for U.S. population using the DEPM model and data from the Combined National Residue Database	Moschandreas <i>et al.</i> , 2002
Both	Non-nursing Infants	0.870 µg/kg/d	intake rate for U.S. population using the DEPM model and data from the Combined National Residue Database	Moschandreas <i>et al.</i> , 2002
Both	1 to 6 y	0.669 µg/kg/d	intake rate for U.S. population using the DEPM model and data from the Combined National Residue Database	Moschandreas <i>et al.</i> , 2002
Both	7 to 12 y	0.425 µg/kg/d	intake rate for U.S. population using the DEPM model and data from the Combined National Residue Database	Moschandreas <i>et al.</i> , 2002
Male	13 to 19 y	0.324 µg/kg/d	intake rate for U.S. population using the DEPM model and data from the Combined National Residue Database	Moschandreas <i>et al.</i> , 2002
Male	20 to 54 y	0.342 µg/kg/d	intake rate for U.S. population using the DEPM model and data from the Combined National Residue Database	Moschandreas <i>et al.</i> , 2002
Male	≥55 y	0.369 µg/kg/d	intake rate for U.S. population using the DEPM model and data from the Combined National Residue Database	Moschandreas <i>et al.</i> , 2002
Female	13 to 19 y	0.281 µg/kg/d	intake rate for U.S. population using the DEPM model and data from the Combined National Residue Database	Moschandreas <i>et al.</i> , 2002
Female	20 to 54 y	0.350 µg/kg/d	intake rate for U.S. population using the DEPM model and data from the Combined National Residue Database	Moschandreas et al., 2002
Female	≥55 y	0.368 µg/kg/d	intake rate for U.S. population using the DEPM model and data from the Combined National Residue Database	Moschandreas <i>et al.</i> , 2002

FINAL REPORT

C-5.3.2 Relative Contributions of Exposure Pathways to Total Exposure

The general population is exposed to nickel in ambient air, water and food (ATSDR, 2003a). The greatest source of exposure for the general population is through food (ATSDR, 2003a). Additional exposures (0.12 to 0.15 μ g/kg/d) may be received through cigarette smoke (ATSDR, 2003a). Other potential sources of nickel exposure are contaminated intravenous fluids, dialysis, and leaching and corrosion of nickel from prostheses (ATSDR, 2003a).

The Windsor Air Quality Study found the following breakdown of inhalation exposure to trace metals: 60% from indoor air in the home, 18% from air in the office, and 22% from outdoor air (exposure while commuting was not considered) (Bell *et al.*, 1994).

C-5.4 Indices of Human Exposure

Sunderman (1993) concluded that serum and urine nickel levels are the most useful biomarkers of nickel exposure in humans. Reported background concentrations in various human tissues and fluids are provided in Table C.62.

	Fluius			
Tissue or Fluid Type	Location	Description	Concentration	References
Blood	Italy	Healthy Italian population	Range: 1.3 to 3.3 μg/L Mean: 2.3 μg/L	Minoia <i>et al.</i> , 1990
Blood	unknown	Mean reference values	<0.05 to 3.8 µg/L	Herber, 1999
Breast milk	Canada	milk collected from 43 mothers in the 1 st 3 months of lactation in Newfoundland between 1988 and 93	0 to 28 μg/L	Friel <i>et al.</i> , 1999
Plasma	unknown	adults nonoccupationally exposed	< 10 µg/L	Hogetveit <i>et al.</i> , 1978
Plasma	unknown	not specified	0.3 to 0.6 µg/L	Versieck and Cornelis, 1989
Serum	unknown	levels in serum of 30 individuals not occupationally exposed	range: <0.05 to 1.05 μg/L mean: 0.34 μg/L	Barceloux, 1999b
Serum	unknown	average for the general population	0.2 μg/L	Templeton <i>et</i> <i>al.</i> , 1994

Table C.62	Background Nickel Concentrations in Human Biological Tissues and
	Fluids

Table C.62	Background Nickel Concentrations in Human Biological Tissues and
	Fluids

Tissue or Fluid Type	Location	Description	Concentration	References
Serum	unknown	normal concentration	Range: 0.05 to 0.23 µg/L Mean: 0.14 µg/L	Nixon <i>et al.</i> , 1989
Serum	Italy	healthy Italian population	Range: 0.24 to 2.8 µg/L Mean: 1.2 µg/L	Minoia <i>et al.</i> , 1990
Serum	unknown	mean reference values	0.14 to 0.63 μg/L	Herber, 1999
Urine	unknown	levels in urine of individuals not occupationally exposed	<2 μg/L max: 9 to 10 μg/L	Barceloux, 1999b
Urine	unknown	average for the general population	1 to 3 μg/L	Templeton <i>et</i> <i>al.</i> , 1994
Urine	unknown	adults nonoccupationally exposed	<5 μg/L	Ader and Stoeppler, 1977
Urine	unknown	nonoccupationally exposed subjects	<2 μg/g creatinine	Oliveira <i>et al.</i> , 2000; Minoia <i>et</i> <i>al.</i> , 1990
Urine	unknown	mean reference values	reference values 0.9 to 3.2 µg/L	
Fingernails	Japan, India, Canada and Poland			Takagi <i>et al.</i> , 1988
Hair	Japan, India, Canada and Poland		0.26 to 2.70 ppm	Takagi <i>et al.</i> , 1986

C-6.0 SELENIUM BACKGROUND EXPOSURE

C-6.1 Sources and Environmental Fate

C-6.1.1 Sources

Selenium is released into the environment from both natural and anthropogenic sources (ATSDR, 2003b). Natural sources of selenium releases to the environment include weathering of selenium-containing rocks, volcanic eruptions and microbial action (ATSDR, 2003b). The largest anthropogenic source of selenium releases is coal fly ash from the burning of coal (ATSDR, 2003b). Other human activities that result in selenium releases are oil combustion, selenium refining, base metal smelting and refining, mining and milling, end product (*e.g.*, semiconductors) manufacturing, and municipal solid waste incineration (ATSDR, 2003b).

C-6.1.2 Environmental Fate and Speciation in Environmental Media

Selenium is stable in the environment in four oxidations states (-2, 0, +4 and +6) and its behaviour in the environment is strongly influenced by its oxidation state, which is dependent in turn on environmental conditions such as pH, pE and biological activity (ATSDR, 2003b).

C-6.1.2.1 Atmosphere

The most common forms of selenium in air are selenium dioxide, methyl selenide and dimethyl selenide (ATSDR, 2003b). Hydrogen selenide is volatile and partitions into air, but it is so reactive in air that it is rapidly oxidized to elemental selenium by sulphur dioxide (ATSDR, 2003b; NAS, 1976b). Dimethyl selenide and methyl selenide are also volatile, but these species persist in the atmosphere (ATSDR, 2003b). Selenium compounds released to the atmosphere as particulates can be removed by both wet and dry deposition to soils or surface waters (ATSDR, 2003b).

C-6.1.2.2 Surface Water and Groundwater

Surface waters receive selenium *via* wet and dry deposition, surface runoff and subsurface drainage (ATSDR, 2003b). Both selenates (+6) and selenites (+4) are water soluble and can be found in natural waters, while neither the heavy metal selenides (-2) nor elemental selenium are water soluble (ATSDR, 2003b). Between pH 3.5 and 9 the principal selenite present is the diselenite ion, and the dominant selenate is SeO_4^{2-} (ATSDR, 2003b). Selenite can be rapidly reduced to elemental selenium under acidic

conditions (NAS, 1980). Sodium selenate is highly water soluble and does not adsorb to particulates, therefore it is highly mobile in the aquatic environment (ATSDR, 2003b). Bacteria and cyanobacteria take up selenate from water by reducing it to elemental selenium, and they also transform soluble selenium species into volatile alkyl compounds (Bender *et al.*, 1991).

C-6.1.2.3 Soils and Sediments

The level of selenium in soils is largely controlled by the selenium content of the parent rock materials (NAS, 1976a), although wet and dry deposition also contribute to selenium levels (ATSDR, 2003b). Heavy metal selenides and selenium sulfides predominate in acidic soils and in soils with high organic matter content (ATSDR, 2003b). They, along with elemental selenium, are insoluble and immobile in soil (ATSDR, 2003b; NAS, 1976b). Sodium and potassium selenites dominate in neutral, well-drained mineral soils (ATSDR, 2003b). In alkaline, well-oxidized soils, the highly mobile selenates are the major species (ATSDR, 2003b). In soils, microorganisms can methylate elemental selenium and inorganic selenium compounds (Doran, 1982; Fishbein, 1983; Shamberger, 1981). Microbially methylated compounds will partition into the atmosphere (ATSDR, 2003b).

C-6.1.2.4 Biota and Foods

Selenates and selenites are both soluble in water, are bioavailable and can be accumulated by plants; however, selenates are preferred over selenites, and are readily taken up by plants and converted into organic compounds (*e.g.*, selenomethionine, selenocysteine, dimethyl selenide and dimethyl diselenide) (ATSDR, 2003b; Baňuelos and Meek, 1990). Selenium bioaccumulates in aquatic organisms and may also biomagnify (ATSDR, 2003b).

The most important pathway for selenium exposure for the general public is food, followed by water, then air (ATSDR, 2003b). Selenium is a micronutrient and is found in many food items. Selenium supplements are available that generally contain 10 to 25 μ g Se/tablet as inorganic selenium or selenomethionine, although some tablets with up to 200 μ g/tablet are available (Goodman *et al.* 1990). In general, fish and seafood, and meats contain the highest concentrations of selenium, cereals have intermediate levels, and fruits and vegetables generally contain the lowest levels (ATSDR, 2003b). Brazil nuts contain extremely high levels of selenium since they grow in the foothills of the Andes Mountains, where the soils are high in selenium (Secor and Lisk, 1989).

C-6.2 Background Exposure Concentrations in Ontario and Canada

C-6.2.1 Background Concentrations in Air

Reported background concentrations of selenium in air are provided in Table C.63.

Location	Description	Concentration	References
Canada (rural)	annual arithmetic means of PM2.5 samples from 38 urban stations across Canada, 1994 to 2004	range: nd to 0.00870 μg/m ³ mean: 0.00116 μg/m ³	Dann, 2005 pers. comm.
Canada (urban)	annual arithmetic means of PM2.5 samples from 8 rural stations across Canada, 1994 to 2004	range: nd to 0.0292 μg/m ³ mean: 0.000947 μg/m ³	Dann, 2005 pers. comm.
Canada (urban)	median PM10 concentrations from 11 urban stations across Canada, 1986 to 1993	range: non-detect to 0.001 $\mu g/m^3$	CEPA/FPAC WGAQOG, 1999
Windsor, Ontario	indoor (home and office) samples of personal air taken 1991 to 1992	range: nd to 3.3 ng/m ³	Bell et al., 1994
Windsor, Ontario	outdoor (residential and commercial neighbourhoods) samples of personal air taken 1991 to 1992	range: nd to 5.2 ng/m ³ mean: 1.9 ng/m ³	Bell et al., 1994
Windsor, Ontario	6 samples of ambient air taken in 1992	range: 0.5 to 2.6 ng/m^3 mean: 1.2 ng/m^3	Bell et al., 1994
British Columbia	mean from 3 stations between 1997 and 1998	mean: 0.629 ng/m^3 range: 0 to 42.0 ng/m ³	Dryfhout-Clark, 2004, pers. comm
U.S.	estimated average concentration	<<10 ng/m ³	NAS, 1976a

Table C.63 Ontario and Canadian Background Selenium Concentrations in Air

C-6.2.2 Background Concentrations in Surface Water and Groundwater

Reported background concentrations of selenium in surface water, groundwater, drinking water and precipitation are provided in Table C.64 to C.66, respectively. Background concentrations of selenium in precipitation were not found.

Table C.64	Ontario and Canadian Background Selenium Concentrations in Fresh Surface
	Water

Location	Description	Concentration	References
Ontario	Mean levels in raw lake water from 90 sampling pts for 82 Ontario water works	range: nd to 9.0 μg/L mean: 0.88 μg/L	Clubb, 2005 pers. comm.
Ontario	Mean levels in raw river water from 51 sampling pts for 46 Ontario water works	range: nd to 9.0 μg/L mean: 0.88 μg/L	Clubb, 2005 pers. comm.

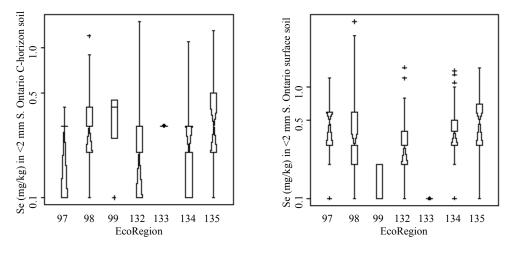
High selenium concentrations in water are more likely to occur in irrigation return waters, seeps, springs and shallow wells where seleniferous soils may contribute to the selenium content of water, and under unusual geologic conditions, selenium concentrations in groundwater may reach as high as 0.60 mg/L (ATSDR, 2003b; Glover *et al.*, 1979).

Table C.65Ontario and Canadian Background Selenium Concentrations in
Groundwater

Location	Description	Concentration	References
Ontario	Mean levels in raw ground water from 61 sampling pts for 55 Ontario water works	range: nd to 14.0 μg/L mean: 1.20 μg/L	Clubb, 2005 pers. comm.
Ontario	Background Site Condition Standards ^a	5 µg/L	MOE, 2004

Surveillance Program, and is considered generally achievable in site situations typical of background.

Table C.66	Ontario and Canadian Background Selenium Concentrations in Drinking
	Water


Location	Description	Concentration	References
Ontario	Mean levels in drinking water from 89 sampling pts in the distribution systems of 54 Ontario water works drawing groundwater	range: nd to 19.9 μg/L mean: 1.36 μg/L	Clubb, 2005 pers. comm.
Ontario	Mean levels in drinking water from 82 sampling pts in the distribution systems of 160 Ontario water works drawing lake water	range: nd to 8.5 µg/L mean: 1.11µg/L	Clubb, 2005 pers. comm.
Ontario	Mean levels in drinking water from 90 sampling pts in the distribution systems of 50 Ontario water works drawing river water	range: nd to 8.0 μg/L mean: 1.08μg/L	Clubb, 2005 pers. comm.

FINAL REPORT

C-6.2.3 Background Concentrations in Soils and Sediment

Concentrations of selenium in soils from across Southern Ontario are plotted in Figure C-11, where the extent of the whiskers provides an estimate of background range for each EcoRegion that is not affected by outliers (+ near outlier; o far outlier) due to natural or anthropogenic processes (Garrett, 2005). Reported background concentrations of selenium in soil, dust and sediments are provided in Tables C.67 and C.68. Background selenium concentrations were not found for sediments.

EcoRegions:

- 97 Lake Timiskaming Lowland, n = 17
- 98 Algonquin-Lake Nipissing (includes Sudbury region), n = 112
- 99 Southern Laurentians, n = 3
- 132 St. Lawrence Lowlands, n = 30

- 133 Frontenac Axis, n = 1
- 134 Manitoulin-Lake Simcoe, n = 89
- 135 Lake Erie Lowlands, n = 42

Figure C-11 Tukey Boxplots, by EcoRegion in Southern Ontario, of Selenium in Chorizon (70-100 cm) and Surface (top 25 cm) Soils.

Table C.67 Ontario and Canadian Background Selenium Concentrations in Soil				
Location	Description	Concentration	References	
Ottawa	garden soil, n=50, collected winter 1993 from 10 Ottawa neighbourhoods	0.6 mg/kg	Rasmussen et al., 2001	
Ontario	upper-limit of background ^a	1.4 to 1.9 mg/kg	MOE, 2004	
Ontario	Ontario Typical Range ^b - old urban parkland	OTR: ~0.125 to 2.5 mg/kg mean: ~0.5 mg/kg OTR ₉₈ : 1.3 mg/kg	MOEE, 1994	
Ontario	Ontario Typical Range ^b - rural parkland	OTR: ~0 to 2 mg/kg mean: ~0.375 mg/kg OTR ₉₈ : 0.93 mg/kg	MOEE, 1994	
Canada	uncultivated, uncontaminated soils, remote from ore bodies	range: 0.03 to 2 mg/kg mean: 0.26 mg/kg	McKeague and Wolynetz, 1980	
Appalachians (Canada)	uncultivated, uncontaminated soils, remote from ore bodies, n=45	0.24 mg/kg	McKeague and Wolynetz, 1980	
Canadian Shield	uncultivated, uncontaminated soils, remote from ore bodies, n=12	0.18 mg/kg	McKeague and Wolynetz, 1980	
St. Lawrence Lowlands	uncultivated, uncontaminated soils, remote from ore bodies, n=40	0.24 mg/kg	McKeague and Wolynetz, 1980	
Interior Plains (Canada)	uncultivated, uncontaminated soils, remote from ore bodies, n=34	0.31 mg/kg	McKeague and Wolynetz, 1980	
Cordillerans (Canada)	uncultivated, uncontaminated soils, remote from ore bodies, n=19	0.30 mg/kg	McKeague and Wolynetz, 1980	

Table C.67	Ontario and Canad	ian Background Seleniu	m Concentrations in Soil

а Value was derived from the Ontario Typical Range values and is representative of the upper limits of typical province-wide background concentrations in soils that are not contaminated by point sources.

b Ontario Typical Ranges (OTRs) represent the expected range of concentrations of contaminants in surface soil from areas in Ontario not subjected to the influence of known point sources of emissions. The OTR₉₈ represents an upper limit of normal. OTR and mean values were estimated from graphs. These values apply to the land use and soil type in Ontario for which they were developed. The soil type is all soils except loamy sand, sand and soils with organic carbon content >17%.

Table C.68 Ontario and Canadian Background Selenium Concentrations in Dust
--

Location	Description	Concentration	References
Ottawa	household dust, n=50, collected winter 1993 from 10 Ottawa neighbourhoods	1.0 mg/kg	Rasmussen et al., 2001
Ottawa	street dust, n=50, collected winter 1993 from 10 Ottawa neighbourhoods	0.4 mg/kg	Rasmussen et al., 2001

In the U.S., reported state mean background concentrations of selenium in soil range from 0.2 mg/kg (California) to 1.9 mg/kg (Massachusetts) (U.S. EPA, 2003). Generic background concentrations of

selenium in soil based on soil type were compiled by Kabata-Pendias and Pendias (1985) and are presented as generic values that may be applied to any area of the U.S. (RAIS, 2004) (see Table C.69).

Table C.69	Generic Background Concentrations of Selenium in Soil by Soil Type
	(Kabata-Pendias and Pendias, 1985)

Soil Type	Range (ppm)	Mean (ppm)
Alluvial soils	<0.1 to 2.0	0.5
Chernozems and dark prairie soils	<0.1 to 1.2	0.4
Clay and clay-loamy soils	<0.1 to 1.9	0.5
Forest soils	<0.1 to 1.6	0.4
Lateritic soils	0.02 to 2.5	1.05
Light desert soils	<0.1 to 1.1	0.5
Light loamy soils	0.02 to 1.2	0.33
Loess and soils on silt deposits	0.02 to 0.7	0.26
Low Humic Gley soils and humus groundwater podzols		
Organic light (or rich) soils	<0.1 to 1.5	0.3
Sandy and lithosols on sandstone		
Silty prairie soils	<0.1 to 1.0	0.3
Soils on glacial till and drift	0.2 to 0.8	0.4
Soils on lacustrine deposits		
Soils over granites and gneisses	<0.1 to 1.2	0.4
Soils over limestones and calcareous rocks	0.1 to 1.4	0.19
Soils over volcanic rocks (or ash)		
Various soils	<0.1 to 4.0	0.31
Western Alluvial soils		

C-6.2.4 Background Concentrations in Biota and Foods

Reported background concentrations of selenium in terrestrial biota are provided in Tables C.70. Background concentrations in other biota were not found.

Table C.70Ontario and Canadian Background Selenium Concentrations in Terrestrial
Biota

Туре	Genus	Description	Concentration	Reference
Primary accumulator	Astragalus Oonopsis Stanelya Xylorhiza Machaeranthera	grasses and herbaceous plants that accumulate Se	100 to 100,000 mg/kg dw	Rosenfeld and Beath, 1964

Table C.70 Ontario and Canadian Background Selenium Concentrations in Terres Biota Provide Selenium Concentrations in Terres					
Туре	Genus	Description	Concentration	Reference	
Secondary accumulator	Astor Gatierreaia Atriplex Grindelia Castillaja Comandra	grasses and herbaceous plants that accumulate Se to a lesser degree	25 to 100 mg/kg dw	Rosenfeld and Beath, 1964	
Non- accumulator		most other plants	<25 mg/kg dw	Rosenfeld and Beath, 1964	

~ . . .

In general, meats contain the highest concentrations of selenium, cereals have intermediate levels, and fruits and vegetables generally contain the lowest levels (ATSDR, 2003b). Reported background concentrations of selenium in Canadian foods are provided in Table C.71.

Typical Selenium Concentrations in Canadian Foods Table C.71

Food Type	Location	Description	Concentration	Reference
Fish and seafood				•
Fish and seafood U.S., 1991 to 2004		mean of fish and seafood samples collected; 5 different foods	mean: 388 ng/g ww ^a	U.S. FDA, 2004
Meat / poultry prod	ucts			
Meat, poultry and U.S., 1991 to eggs 2004		mean of meat <i>etc</i> . samples collected; 23 different foods	mean: 268 ng/g ww ^a	U.S. FDA, 2004
Milk and dairy prod	lucts			
Dairy	U.S., 1991 to 2004	mean of dairy samples collected; 17 different foods	mean: 64 ng/g ww ^a	U.S. FDA, 2004
Infant formula	U.S., 1991 to 2004	mean of dairy samples collected; 2 different foods	mean: 20 ng/g ww ^a	U.S. FDA, 2004
Cereals, grains and	baked goods			
Cereals, grains and baked goods U.S., 1991 to 2004		mean of cereal <i>etc.</i> samples collected; 33 different foods	mean: 130 ng/g ww ^a	U.S. FDA, 2004
Fruits and fruit juic	es			
Fruit and fruit U.S., 1991 to 2004		mean of fruit samples collected; 28 different foods	mean: 0.8 ng/g ww ^a	U.S. FDA, 2004
Root vegetables				
Root vegetables	U.S., 1991 to 2004	mean of root vegetable samples collected; 16 different foods	mean: 3.2 ng/g ww ^a	U.S. FDA, 2004

Food Type	Location	Description	Concentration	Reference
Other vegetables				
All types of vegetables	U.S., 1991 to 2004	mean of vegetables samples collected; 45 different foods	mean: 10 ng/g ww ^a	U.S. FDA, 2004
Fats and oils				
Fats, oils and peanutsU.S., 1991 to 2004		mean of samples collected; 9 different foods	mean: 28 ng/g ww ^a	U.S. FDA, 2004
Sugars and sweets				
Sugar, desserts and U.S., 1991 to 2004		mean of samples collected; 24 different foods	mean: 29 ng/g ww ^a	U.S. FDA, 2004
Beverages				
Alcoholic beverages	U.S., 1991 to 2004	means of samples collected; 4 different foods	mean: 0.8 ng/g ww ^a	U.S. FDA, 2004
Non-alcoholic beverages	U.S., 1991 to 2004	means of samples collected; 9 different foods	mean: 0.6 ng/g ww ^a	U.S. FDA, 2004
Other				y
Mixed foods (<i>e.g.</i> , soup, casserole, pizza)	U.S., 1991 to 2004	mean of mixed food samples collected; 28 different foods	mean: 120 ng/g ww ^a	U.S. FDA, 2004

Table C.71	Typical Selenium Concentrations in Canadi	an Foods
	i y pical Sciellian Concentrations in Canadi	an roous

^a Analyses were performed on foods that prepared as they would be consumed (*i.e.*, table-ready foods).

Means were calculated from raw data in original study.

Selenium is not one of the elements evaluated in the Canadian Total Diet study; therefore, U.S. data were reported.

C-6.3 Estimated Canadian Daily Intakes

C-6.3.1 Dietary Intake

The RDA for selenium is 0.055 mg/d for men and women (NAS, 2000). Selenium supplements are available that generally contain 10 to 25 μ g Se/tablet as inorganic selenium or selenomethionine, although some tablets with up to 200 μ g/tablet are available (Goodman *et al.*, 1990). Reported dietary intake rates of selenium are provided in Table C.72.

Table C.72	Dietary Intake Rates of Selenium				
Gender	Age	Intake Rate	Comments	Reference	
Both	All	114 µg/d			
Male	<6 y	134 µg/d			
Male	6 to 11 y	102 µg/d			
Male	12 to 19 y	140 µg/d			
Male	20 to 59 y	153 μg/d	Intellements Com II Communications have down		
Male	≥60 y	118 µg/d	Intake rate for U.S. population based on	U.S. DHHS, 2002	
Female	<6 y	94 μg/d	NHANES III (data collected 1988 to 1994)		
Female	6 to 11 y	90 μg/d			
Female	12 to 19 y	93 μg/d			
Female	20 to 59 y	102 µg/d			
Female	≥60 y	87 μg/d			

C-6.3.2 Relative Contributions of Exposure Pathways to Total Exposure

The most important pathway for selenium exposure for the general public is food, followed by water, then air (ATSDR, 2003b). For workers in the metals industry, health services, mechanics and painters, occupational exposure to selenium may be more important than exposure *via* other routes (ATSDR, 2003b).

The Windsor Air Quality Study found the following breakdown of inhalation exposure to trace metals: 60% from indoor air in the home, 18% from air in the office, and 22% from outdoor air (exposure while commuting was not considered) (Bell *et al.*, 1994).

Children are exposed to selenium by the same pathways as adults, the primary source of exposure being food (ATSDR, 2003b).

C-6.4 Indices of Human Exposure

Although the biological significance of selenium in the blood and urine is not yet fully established, monitoring selenium levels in human biological tissues may indicate exposure (Lauwerys and Hoet, 2001). Selenium concentration in the plasma (or serum) and urine reflect short-term exposure, while erythrocyte concentrations reflect intake over a 120 day period. Whole blood may be representative of long-term exposure as under normal exposure selenium is found at higher concentrations in the erythrocytes (Lauwerys and Hoet, 2001). Reported background concentrations of selenium in various human tissues and fluids are provided in Table C.73.

Fluids					
Tissue or Fluid Type	Location Description		Concentration	References	
Blood U.S.		levels in whole blood of residents from 19 U.S. cities	range: 0.10 to 0.34 mg/L mean: 0.21 mg/L	Barceloux, 1999c	
Blood U.S		estimated levels in serum based on data collected 1988 to 1994 in NHANES III	Males all ages: 0.126 mg/L 12 to 19 y: 0.121 mg/L 20 to 59 y: 0.127 mg/L ≥60 y: 0.126 mg/L Females all ages: 0.123 mg/L 12 to 19 y: 0.121 mg/L 20 to59 y: 0.123 mg/L ≥60 y: 0.125 mg/L	U.S. DHHS, 2002	
Blood	South Dakota (U.S.)	mean value	221 to 640 µg/L	Whanger <i>et al.</i> , 1988	
Blood	South Dakota and Wyoming (U.S.)	mean value	187 to 560 μg/L	Swanson <i>et al.</i> , 1990	
Blood	Belgium	Belgian subjects	33 to 181 µg/L	Lauwerys, 1999	
Hair	U.S	general population	$0.57 \pm 0.4 \ \mu g/g$	ATSDR, 1989	
Serum	various locations	nonoccupationally exposed subjects	15 to 360 µg/L	Alfthan and Neve, 1996	
Serum/Plasma	Italy	Italian healthy population	56 to 106 μg/L	Minoia <i>et al.</i> , 1990	
Toenails	unknown	mean concentrations	$0.78 \pm 0.17 \text{ ppm}$	Bukkens <i>et al.</i> , 1990	
Toenails	unknown	mean concentrations	12 µg/g	Swanson <i>et al.</i> , 1990	
Toenails	unknown	mean concentrations	$1.5\pm0.55~\mu\text{g/g}$	Longnecker et al., 1996	
Urine	unknown	unoccupationally exposed subjects	1 to 200 µg/L	Lauwerys, 1999	
Urine	unknown	normal concentrations	< 30 µg/L	Robberecht and Deelstra, 1984	
Urine	Italy	healthy Italian population	2.1 to 30.9 µg/L	Minoia <i>et al.</i> , 1990	

Table C.73 Background Selenium Concentrations in Human Biological Tissues and Fluids

C-7.0 **REFERENCES**

- Adams, M.A., Bolger, P.M., and Gunderson, E.L. 1994. Dietary intake and hazards of arsenic. <u>In</u>: Arsenic Exposure and Health. Chappell, W.R., Abernathy, C.O., and Cothern, C.R. (eds). Science and Technology Letters, Northwood. 4:41-49.
- Ader, D., and Stoeppler, M. 1977. Radiochemical and methodological studies on the recovery and analysis of nickel in urine. J Anal Toxicol 1: 252. Cited In: Lauwerys and Hoet, 2001.
- Alexandersson, R. 1988. Blood and urinary concentrations as estimators of cobalt exposure. Arch Env Health 43(4): 299-303. Cited In: ATSDR, 2004a.
- Alfthan, G., and Neve, J. 1996. Reference values for serum selenium in various areas evaluated according to the TRACY protocol. J Trace Elem Med Biol 10:77. Cited In: Lauwerys and Hoet, 2001.
- Anderson, L.C.D., and Bruland, K.W. 1991. Biogeochemistry of Arsenic in Natural Waters: The Importance of Methylated Species. Environ Sci Technol 25-3: 420-427.
- Andreae, M.O. 1978. Distribution and speciation of arsenic in natural waters and some marine algae. Deep-Sea Res. 25: 391-402. Cited In: CEPA, 1993.
- Arbouine, M.W., Wilson, H.K. 1992. The effect of seafood consumption on the assessment of occupational exposure to arsenic by urinary arsenic speciation measurements. J Trace Elem Electrolytes Health Sid 6: 153-160.
- ATSDR. 1997. Toxicological Profile for Arsenic. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. Agency for Toxic Substances and Disease Registry.
- ATSDR. 1989. Toxicological profile for selenium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. Agency for Toxic Substances and Disease Registry. Cited In: Lauwerys and Hoet, 2001.
- ATSDR. 1999. Toxicological profile for lead. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. Agency for Toxic Substances and Disease Registry. http://www.atsdr.cdc.gov/toxprofiles/tp13.html.
- ATSDR. 2000. Toxicological Profile for Arsenic. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. Agency for Toxic Substances and Disease Registry.
- ATSDR . 2003a. Toxicological profile for nickel. Draft for Public Comment (Update). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. Agency for Toxic Substances and Disease Registry
- ATSDR. 2003b. Toxicological profile for selenium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/tp92.html. Agency for Toxic Substances and Disease Registry.

- ATSDR. 2004a. Toxicological profile for cobalt. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/tp33.html
- ATSDR. 2004b. Toxicological profile for copper draft for public comment. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. Agency for Toxic Substances and Disease Registry. Agency for Toxic Substances and Disease Registry. http://www.atsdr.cdc.gov/toxprofiles/tp132.html
- Azcue, J.M. 1992. Arsenic cycling in Moira Lake (Ontario). Ph.D. Thesis, University of Waterloo, Waterloo, Ontario. Cited In: CEPA, 1993.
- Azcue, J.M., Mudroch, A., Rosa, F., and Hall, G.E.M. 1994. Effects of abandoned gold mine tailings on the arsenic concentrations in water and sediments of Jack of Clubs Lake, BC. Environ Technol, 15(7): 669–678. Cited In: IPCS, 2001.
- Baňuelos, G.S., and Meek, D.W. 1990. Accumulation of selenium in plants grown on selenium-treated soil. J Environ Qual 19(4):772-777. Cited In: ATSDR, 2003b.
- Barceloux, D.G. 1999a. Cobalt. Clin Toxicol 37(2):201-216. Cited In: ATSDR, 2004a.
- Barceloux, D.G. 1999b. Nickel. Clin Toxicol 37(2): 239-258. Cited In: ATSDR, 2003a.
- Barceloux, D.G. 1999c. Selenium. Clin Toxicol 37(2):145-172. Cited In: ATSDR, 2003b.
- Beijer, K., and Jernelov, A. 1986. Sources, transport and transformation of metals in the environment. <u>In</u>: Handbook on the Toxicology of Metals, Vol. 1, Friberg, L., Nordberg, G.F. and Vouk, V.B. (Eds.). Elsevier Science Publishers, New York. pp.68-84. Cited In: CCME, 2004.
- Bell, R.W., Chapman, R.E., Kruschel, B.D., and Spencer, M.J. 1994. Windsor Air Quality Study: Personal Exposure Survey Results. Report prepared by the Atmospheric Studies Section, Science and Technology Branch, Ontario Ministry of Environment and Energy for the Windsor Air Quality Committee.
- Belzile, N. 1988. The fate of arsenic in sediments of the Laurentian Trough. Geochim Cosmochim Acta 52:2293-2302. Cited In: CEPA, 1993.
- Bencko, V. 1995. Use of human hair as a biomarker in the assessment of exposure to pollutants in occupational and environmental settings. Toxicology 101: 29-39.
- Bender, J., Gould, J.P., Vatcharapijarn, Y., et al. 1991. Uptake, transformation and fixation of selenium (VI) by a mixed selenium-tolerant ecosystem. Water Air Soil Pollut 59(3-4):359-368. Cited In: ATSDR, 2003b.
- Benko, V., and Symon, K. 1977. Environ Res 13:378-385. <u>In</u>: Toxicology of Metals. Chang, L.W. Ed. CRC Lewis Publishers. Chapter 6. Cited In: Gerhardson, L. and Skerfving, S. 1996.
- Bennett, B.G. 1981. Exposure of man to environmental arsenic an exposure commitment assessment. In: The Science of the Total Environment, 20: 99-107.

- Benramdane, L., Bressolle, F., and Vallon, J.J. 1999. Arsenic speciationin humans and food products: a review. J Chroma Sci 37(Sept): 330-344.
- Beyer, W.N., and Cromartie, E.J. 1987. A survey of Pb, Cu, Zn, Cd, Cr, As, and Se in earthworms and soil from diverse sites. Environ Monit Assess 8:27-36. Cited In: ATSDR, 2000.
- Bissen, M., and Frimmel, F.H. 2003. Arsenic a review. Part 1: occurrence, toxicity, speciation, mobility. Acta Hydrochim. Hydrobiol 31(1): 9-18.
- Borum, D.R., and Abernathy, C.O. 1994. Human oral exposure to inorganic arsenic. <u>In</u>: Arsenic Exposure and Health. Chappell, W.R., Abernathy, C.O., and Cothern, C.R. (eds). Science and Technology Letters, Northwood. 2:21-29. ISBN 0-905927-49-4.
- Bottomley, D.J. 1984. Origins of some arseniferous groundwaters in Nova Scotia and New Brunswick, Canada. J Hydrogeology 69: 223-257. Cited In: CEPA, 1993.
- Bowman, R.S., Essington, M.E., and O'Connor, G.A. 1981. Soil sorption of nickel: Influence of solution composition. Soil Sci Soc Am J 45:860-865. Cited In: ATSDR, 2003a.
- Boyle, R.W., Dass, A.S., Church, D., Mihailov, G., Durham, C., Lynch, J. and Dyck, W. 1969. Research in Geochemical Prospecting Methods for Native Silver deposits, Cobalt Area, Ontario, 1966. Geol. Surv. Can. Paper 67-35. 91 pp. Cited In: CEPA, 1993.
- Boyd, D. 2004. Personal Communication from Duncan Boyd, Ontario Ministry of the Environment. Unpublished data on metal concentrations in surface waters and sediments from lakes and rivers sampled across Ontario (1994 to 2003). Cited In: CCME, 2004.
- Boyle, R.W., and Jonasson, I.R. 1973. The geochemistry of arsenic and its use as an indicator element in geochemical prospecting. J Geochem Explor 2:251-296. Cited In: CEPA. 1993.
- Bright, D.A., Dodd, M., and Reimer, K.J. 1996. Arsenic in subArctic lakes influenced by gold mine effluent: the occurrence of organoarsenicals and 'hidden' arsenic. Sci Total Environ, 180:165-182. Cited In: IPCS, 2001.
- Brinckman, F.E., Parris, G.E., Blair, W.R., Jewett, K.L., Iverson, W.P., and Bellama, J.M. 1977. Questions Concerning Environmental Mobility of Arsenic: Needs for a Chemical Data Base and Means for Speciation of Trace Organoarsenicals. Environmental Health Perspectives. 19:11-24.
- Brooks, R.R., Fergusson, J.E., Holzbecher, J., Ryan, D.E., Zhang, H.F., Dale, J.M., and Freeman, B.
 1982. Pollution by arsenic in a gold-mining district in Nova Scotia. Environ Pollut (Series B)
 4:109-117. Cited In: CEPA. 1993.
- Brzezinska-Paudyn, A., Van Loon, J.C., and Balicki, M.R. 1986. Multielement Analysis and Mercury Speciation in Atmospheric Samples from the Toronto Area. Water, Air, and Soil Pollution. 27:45-56.
- Bukkens, S.G., *et al.* 1990. Selenium status and cardiovascular risk factors in healthy Dutch subjects. J Am Coll Nutr 9: 128. Cited In: Lauwerys and Hoet, 2001.

- Callahan, M.A., Slimak, M.W., Gabel, N.W., May, I.P., Fowler, C.F., Freed, J.R., Jennings, R.L., Durfee, R.L., Whitmore, B., Maestri, B., Mabey, W.R., Holt, B.R. and Gould, C. 1979. Nickel. <u>In</u>: Water-related Environmental Fate of 129 Priority Pollutants, Vol.1: Introduction and Technical Background, Metals and Inorganics, Pesticides and PCBs. U.S. Environmental Protection Agency Report ERA-440/4-79-029a. U.S. EPA, Office of Water and Waste Management. Cited In: CCME, 2004.
- CCME. 1997. Recommended Canadian Soil Quality Guidelines. ISBN 1-895-925-92-4. Canadian Council of Ministers of the Environment.
- CCME. 1999. Canadian soil quality guidelines for the protection of environmental and human health (1999). <u>In</u>: Canadian Environmental Quality Guidelines, 1999, CCME, Winnipeg. Canadian Council of Ministers of the Environment.
- CCME. 2004. Canadian Soil Quality Guidelines for Contaminated Sites, Human Health Effects: Nickel. Final Report. February 1996, Revised October 2004. The National Contaminated Sites Remediation Program. Prepared for the CCME by Health Canada and revised by Wilson Scientific Consulting Inc. Canadian Council of Ministers of the Environment.
- CDC. 2001. Lead. National Report on Human Exposure to Environmental Chemicals. CDC, Atlanta, GA, March, 2001. Centers for Disease Control and Prevention.
- CEPA. 1993. Priority Substances List Assessment Report. Arsenic and its Compounds. Government of Canada, Health and Welfare Canada, and Environment Canada. ISBN 0-662-20488-3. Canadian Environmental Protection Act.
- CEPA. 1994.Priority Substances List Assessment Report: Nickel and its Compounds. Government of Canada, Environment Canada, Health Canada. Canadian Environmental Protection Act. Cited In: ATSDR, 2003a.
- CEPA/FPAC WGAQOG. 1999. National Ambient Air Quality Objectives for Particulate Matter, Part 1: Science Assessment Document. A report by the CEPA/FPAC WGAQOG. Working Group on Air Quality Objectives and Guidelines.
- Chan, W.H., Tang, A.J.S., Chung, D.H.S., *et al.* 1986. Concentration and deposition of trace metals in Ontario 1982. Water Air Soil Pollut 29:373-389. Cited In: ATSDR, 2004b.
- Chapman, P., and Wang, R. 2000. Issues in ecological risk assessment of metals and metalloids. Human and Ecological Risk Assessment 6(6). Cited In: CCME, 2004.
- Chilvers, D.C., and Peterson, P.J. 1987. Global cycling of arsenic. <u>In</u>: T.C. Hutchinson, and K.M. Meema, eds. Lead, Mercury, Cadmium and Arsenic in the Environment. Scope 31. John Wiley and Sons, New York. 279-301. Cited In: CEPA, 1993.
- Christensen, J.M., and Poulsen, O.M. 1994. A 1982-1992 surveillance programme on Danish pottery painters. Biological levels and health effects following exposure to soluble or insoluble cobalt compounds in cobalt blue dyes. Sci Total Environ 150: 95. Cited In: Lauwerys and Hoet, 2001.

- Clemens, S. 2001. Review: Molecular mechanisms of plant metal tolerance and homeostasis. 212:475-486. Cited In: ATSDR, 2004b.
- Clubb, T. 2005. Personal communication from Tom Clubb, Ontario Ministry of the Environment. Summary of selected metal parameters for raw water, treated water and distribution water sampling sites as monitored by the Drinking Water Surveillance Program 1990-2002.
- Cullen, W.R., and Reimer, K.J. 1989. Arsenic speciation in the environment. Chem Rev 89:713-764. Cited In: CEPA, 1993.
- Dabeka, R.W., McKenzie, A.D., and Lacroix, G.M.A. 1987. Dietary intakes of lead, cadmium, arsenic and fluoride by Canadian adults: a 24-hour duplicate diet study. Food Addit. Contam., 4(1): 89-102.
- Dabeka, R.W., Karpinski, K.F., McKenzie, A.D., *et al.* 1988. Survey of lead and cadmium in human milk and correlation of levels with environmental and food factors. Sci Total Environ 71:65-66. Cited In: ATSDR, 1999.
- Dabeka, R.W. 1989. Survey of lead, cadmium, cobalt and nickel in infant formulas and evaporated milks and estimation of dietary intakes of the elements by infants 1-12 months old. Sci Total Environ 89:279-289. Cited In: ATSDR, 2004a.
- Dabeka, R.W., and McKenzie, A.D. 1992. Total Diet Study of Lead and Cadmium in Food Composites: Preliminary Investigations. J of AOAC Int'l. 75(3):386-394.
- Dabeka, R.W., Conacher, H.B.S., Salminen, J., Nixon, G.R., Riedel, G., Crocker, R., and Dubé G. 1992. Survey of bottled drinking water sold in Canada. Part1. lead, cadmium, arsenic, aluminum, and fluoride. J. AOAC Int'1. 75(6): 949-953.
- Dabeka, R.W., McKenzie, A.D., LaCroix, G.M.A., Cleroux, C., Bowe, S., Graham, R.A., Conacher, H.B.S., and Verdier, P. 1993. Survey of arsenic in total diet food composites and estimation of the dietary intake of arsenic by Canadian adults and children. J. AOAC Intl 76(1): 14-25.
- Dabeka, R.W., and McKenzie, A.D. 1995. Survey of lead, cadmium, fluoride, nickel, and cobalt in food composites and estimation of dietary intakes of these elements by Canadians in 1986-1988. J. AOAC Int'l. 78(4): 897-909.
- Dabeka, R.W., and McKenzie, A.D. 2005. Personal communication. Unpublished data from the 2000 TDS. Health Canada.
- Dang, T.M., Tran, Q.T., and Vu, K.V. 1999. Determination of arsenic in urine by atomic absorption spectrophotometry for biological monitoring of occupational exposure to arsenic. Toxicol Lett 108: 179. Cited In: Lauwerys and Hoet, 2001.
- Dann, T. 1990. Unpublished data. Environment Canada, Pollution Measurement Division, Conservation and Protection. Cited In: CEPA, 1993.

- Dann, T. 2005. Personal communication with Tom Dann, Analysis and Air Quality Division, Environment Canada. 03/Mar/2005.
- Demayo, A., Taylor, M.C., Taylor, K.W. and Hodson, P.V. 1982. Toxic effects of lead and lead compounds on human health, aquatic life, wildlife plants and livestock. CRC Crt. Rev. Environ. Control 12:257-305. <u>Cited In:</u> Eisler, 1988b.
- DHHS. 1997. National Health and Nutrition Examination Survey (NHANES), III 1988-1994. CDROM Series 11, No. 1. (July 1997). U.S. DHHS, Public Health Service, Centers for Disease Control and Prevention (CDC). (Department of Health and Human Services. Cited In: ATSDR, 2003b.
- DNHW. 1983. Food/field monitoring project FM-35. Bureau of Chemical Safety, Ottawa. Department of Health and Human Services. Cited In: GCDWQ, 1996.
- Dolan, R., Loon, J. Van, Templeton, D., and Paudyn, A. 1990. Assessment of ICP-MS for routine multielement analysis of soil samples in environmental trace element studies. Fresenius J Anal Chem, 336(2):99-105. Cited In: IPCS, 2001.
- Doran, J.W. 1982. Microorganisms and the biological cycling of selenium. Adv Microbiol Ecol 6:1-32. Cited In: ATSDR, 2003b.
- Doyle, P.J., Gutzman, D.W., Sheppard, M.I., Sheppard, S.C., Bird, G.A., and Hrebenyk, D. 2003. An ecological risk assessment of air emissions of trace metals from copper and zinc production facilities. Human and Ecological Risk Assessment 9(2): 607-636. Cited In: CCME, 2004.
- Dryfhout-Clark, H. 2004. Personal communication from Helena Dryfhout-Clark on February 21, 2004. Unpublished monitoring data on air quality of the Great Lakes Basin from the Integrated Atmospheric Deposition Network (IADN) EC, Egbert, Ontario. Cited In: Health Canada, 2004a, and raw data provided to CEI by the authors.
- Dudas, M.J. 1984. Enriched levels of arsenic in post-active acid sulfate soils in Alberta. Soil Sci Soc Am J. 48:1451-1452. Cited In: IPCS, 2001.
- EAG. 1984. Identification of sources of inhalable particulates in Canadian urban areas. Final report. Prepared for Environment Canada. The Environmental Application Groups Ltd. Cited In: GCDWQ, 1996.
- Environment Canada. 1985. The National Incinerator Testing and Evaluation Program: Two-Stage Combustion (Prince Edward Island). Vol. IV, Detailed Results, Environment Canada, Ottawa. Environment Canada. Cited In: CEPA, 1993.
- Environment Canada. 1987. The National Incinerator Testing and Evaluation Program: Mass Burning Incinerator Technology Quebec City. Vol. IV, Detailed Results, Book 1. Environment Canada, Ottawa. Environment Canada. Cited In: CEPA, 1993.
- Environment Canada. 1988. Tables of inhalable particulate and inorganic compound concentrations in two monitoring stations (Windsor and Walpole Island) in the Windsor/Walpole Air Monitoring Network in Ontario. Unpublished report. Environment Canada. Cited In: GCDWQ, 1996.

- Environment Canada. 1996. Canadian soil quality guidelines for arsenic: environmental and human health. Guidelines Division, Evaluation and Interpretation Branch, Environmental Conservation Service, Environment Canada, Ottawa. Draft document. Environment Canada . Cited In: CCME, 1997.
- Environment Canada. 2002. Regulatory Impact Analysis Statement: Regulations Amending the Gasoline Regulations. CEPA Environmental Registry, 12/Dec/2002. Environment Canada. http://www.ec.gc.ca/CEPARegistry/regulations/RegText.cfm?intReg=77andintDocument=340.
- Eckel, W.P., and Jacob, T.A. 1988. Ambient levels of 24 dissolved metals in U.S. surface and ground waters. In: American Chemical Society Division of Environmental Chemistry, 196th Meeting 28:371-372. Cited In: ATSDR, 1999.
- Eckel, W.P., and Langley, W.D. 1988. A background-based ranking technique for assessment of elemental enrichment in soils at hazardous waste sites. In: Superfund '88: Proceedings of the 9th National Conference, November 28-30, 1988, Washington, DC. Silver Spring, MD: The Hazardous Materials Control Research Institute, 282-286. Cited In: ATSDR, 2000.
- Eisler, R. 1988a. Arsenic hazards to fish, wildlife, and invertebrate: a synoptic review. U.S. Fish and Wildl Serv Biol Rep 85. p.12. Cited In: CEPA, 1993.
- Eisler, R. 1988b. Contaminant Hazard Reviews Lead. Patuxent Wildlife Research Center, U.S. Fish and Wildlife Service. Report 14. April, 1988.
- Eisler, R. 1988c. Lead hazards to fish, wildlife, and invertebrates: A synoptic review. Laurel, MD: U.S. Department of the Interior, Fish and Wildlife Service. Biol Report 85 (1.14). Cited In: ATSDR, 1999.
- Eisler, R. 1994. A review of arsenic hazards to plants and animals with emphasis on fishery and wildlife. <u>In</u>: Nriagu, J.O., ed. Arsenic in the environment: Part II: Human health and ecosystem effects. New York, NY: John Wiley and Sons, Inc, 185-259. Cited In: ATSDR, 2000.
- Emerson, R. 1994. Contamination of soil from gun shot: St. Thomas Gun Club 1993. Phytotoxicology Section, Ontario Ministry of Environment and Energy, Toronto, Canada. Cited In: Holdner *et al.*, 2004.
- Errington, J.C., and Ferguson, K.D. 1987. Acid mine drainage in British Columbia, Today and Tomorrow. <u>In</u>: Proceedings, Acid Mine Drainage Seminar/Workshop, March 1987, Halifax, Nova Scotia. Environment Canada/Transport Canada, Ottawa. pp. 67-87. Cited In: CEPA, 1993.
- Evans, J.C., Abel, K.H., Olsen, K.B., Lepel, E.A., Sanders, R.W., Wilkerson, C.L., Hayes, D.J., and Mangelson, N.F. 1985. Report for the Canadian Electrical Assoc. Volume 1, Contract No. 001G194. Characterization of trace constituents at Canadian coal-fired power plants. Phase I, Final Report. Cited In: CEPA, 1993.
- Fergusson, J.E., and Ryan, D.E. 1984. The Elemental Composition of Street Dust from Large and Small Urban Areas Related to City Type, Source and Particle Size. The Science of the Total Environment. 34:101-116.

- Fishbein, L. 1983. Environmental selenium and its significance. Fundam Appl Toxicol 3:411-419. Cited In: ATSDR, 2003b.
- Fleming, S., and Kuja, A. 1998. Screening Level Assessment of Exposure and Associated Risk to Arsenic in Deloro Village, Ontario. Ontario Ministry of the Environment.
- Frank, R., Ishida, K., and Suda, P. 1976. Metals in agricultural soils of Ontario. Can. J. Soil Sci. 56:181-196. Cited In: CCME, 1999.
- Friel, J.K., Andrews, W.L., Jackson, S.E., Longerich, H.P., Mercer, C., McDonald, A., Dawson, B., and Sutradhar, B. 1999. Elemental composition of human milk from mothers of premature and fullterm infants during the first 3 months of lactation. Biological Trace Element Research 67: 225-247.
- Friske, P. 1993. Geological Survey of Canada, Ottawa, Ontario. Personal communication. Cited In: CCME, 2004.
- Friske, P.W.B. 1985. Regional geochemical reconnaissance interpretation of data from the north shore of Lake Superior. Geol Surv Can Paper. 84-21. p.38. Cited In: CEPA, 1993.
- Gagan, E. W. 1979. Arsenic Emissions and Control Technology: Gold Roasting Operations. Environment Canada, Air Pollution Control Directorate. EPS 3-Ap-79-5. p.24. Cited In: CEPA, 1993.
- Garrett, R.G. 2005. Personal communications from Robert G. Garrett, March 14th and 15th, 2005. Summary statistics for trace elements in Ontario surface soils, C-horizon soils and lake sediments. Geological Survey of Canada, Ottawa, Ontario.
- GCDWQ. 1996. Published by authority of the Minister of Health. Guidelines for Canadian Drinking Water Quality. ISBN 0-660-16295-4.
- Gebel, T.W., Suchenwirth, R.H.R., Bolten, C., and Dunkelberg, H.H. 1998. Human Biomonitoring of Arsenic and Antimony in a Case of and Elevated Geogenic Exposure. Environ Health Persp. 106(1):33-39.
- Georgopoulos, A.R., Yonone-Lioy, M.J., Opiekun, R.E., *et al.* 2001. Environmental copper: Its dynamics and human exposure issues. J Toxicol Environ Health Part B Crit Rev 4(4):341-394. Cited In: ATSDR, 2004b.
- Gerhardson, L. and Skerfving, S. 1996. Concepts on Biological Markers and Biomonitoring for Metal Toxicity. 6:81-107. <u>In</u>: Toxicology of Metals. Chang, L.W. Ed. CRC Lewis Publishers.
- Gilman, J.P.W. and Ruckerbauer, G.M. 1962. Metal carcinogenesis: I. Observations on the carcinogenicity of a refinery dust, cobalt oxide and colloidal thorium dioxide. Cancer Res. 22: 152-157. Cited In: CCME, 2004.

- Glooschenko, W.A., and Arafat, N. 1988. Atmospheric Deposition of Arsenic and Selenium Across Canada Using Sphagnum Moss as a Biomonitor. The Science of the Total Environment. 73:269-275.
- Glover, J., Levander, O., Parizek, J., et al. 1979. Selenium. <u>In</u>: Friberg, L., Norberg, G.F. and Vouk, V.B., eds. Handbook on the toxicology of metals. Amsterdam: Elsevier/North Holland Biomedical Press, 555-557. Cited In: ATSDR, 2003b.
- Goodman, M.A., Jonas, E. and Kaddimir, J.J. 1990. The internist's compendium of drug therapy. Hoboken, NJ: Core Publishing Division Excerpta Medica, 17. Cited In: ATSDR, 2003b.
- Graedel, T.E. 1978. Inorganic elements, hydrides, oxides and carbonates. In: Chemical compounds in the atmosphere. New York, NY: Academic Press, 35-49.
- Grandjean, P., Weihe, P., Needham. L.L., *et al.* 1995. Relation of a seafood diet to mercury, selenium, arsenic, and polychlorinated biphenyl and other organochlorine concentrations in human milk. Environ Res 71(1):29-38. Cited In: ATSDR, 2000.
- Harrison, F.L., and Bishop, D.J. 1984. A review of the impact of copper released into freshwater environments. U.S. Nuclear Regulatory Commission. Livermore, CA: Lawrence Livermore National Laboratory. NUREG/CR-3478. Cited In: ATSDR, 2004b.
- HC. 1992. Guidelines for Canadian Drinking Water Quality Support Documentation. Environmental Health Directorate, Bureau of Chemical Hazards. Health Canada. <u>Available at</u>: http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/doc_sup-appui/lead-plomb/index_e.html.
- HC. 2004a. Canadian Total Diet Study: Concentrations of Contaminants and Other Chemicals in Food Chemicals. Health Canada, Food Program. Health Canada. http://www.hc-sc.gc.ca/food-aliment/cs-ipc/fr-ra/e tds concentration.html.
- HC. 2004b. Dietary Intakes of Contaminants and Other Chemicals for Different Age-Sex Groups of Canadians. Health Canada, Food Program. Health Canada. http://www.hc-sc.gc.ca/food-aliment/cs-ipc/fr-ra/e tds dietary intakes.html.
- HC. 2004c. Effects of Lead on Human Health. It's Your Health, Health Canada, February 2004. Health Canada. http://www.hc-sc.gc.ca/english/iyh/environment/lead.html
- Henning, F.A., and Konasewick, D.E. 1984. Characterization and Assessment of Wood Preservation Facilities in British Columbia. Environmental Protection Service, Pacific Region, Environment Canada, West Vancouver, British Columbia. p.206. Cited In: CEPA, 1993.
- Henry, W.M., and Knapp, K.T. 1980. Compound forms of fossil fuel fly ash emissions. Environ. Sci. Tech. 14: 450-456. Cited In: CCME, 2004.
- Herber, R.F. 1999. Review of trace element concentrations in biological specimens according to the TRACY protocol. Int Arch Occup Environ Health 72: 279. Cited In: Lauwerys and Hoet, 2001.

Hewitt, D.J. *et al.* 1995. Investigation of arsenic exposure from soil at a superfund site. Environ Res 69: 73. Cited In: Lauwerys and Hoet, 2001.

Hickey, M.F., and Kittrick, J.A. 1984. J. Environ. Qual. 13: 372-376. Cited In: CCME, 2004.

- Hiltzbold, A.E. 1975. Behaviour of organoarsenicals in plants and soils. <u>In</u>: E.A. Woolson, ed. Arsenical Pesticides. ACS Symp. Ser. 7, American Chemical Society, Washington. 53-69. Cited In: CEPA, 1993.
- Hindmarsh, J.T., and McCurdy, R.F. 1986. Clinical and Environmental Aspects of Arsenic Toxicity. CRC Critical Reviews in Clinical Laboratory Sciences.
- Hindmarsh, J.T., McLetche, O.R., Heffernan, L.P.M., Hayne, O.A., Ellenberger, H.A., McCurdy, R.F., and Thiebaux, H.J. 1977. Electromyographic Abnormalities in Chronic Environmental Arsenicalism.
- Hogetveit, A.C., Barton, R.T., and Kostol, C.O. 1978. Plasma nickel as a primary index of exposure in nickel refining. Ann Occup Hyg 21: 113. Cited In: Lauwerys and Hoet, 2001.
- Holdner, J., Wainman, B., Jayasinghe, R., Van Spronsen, E., Karagatzides, J.D., Nieboer, E. and Tsuji, L.J.S. 2004. Soil and plant lead of upland habitat used extensively for recreational shooting and game bird hunting in Southern Ontario, Canada. Bull. Environ. Contam. Toxicol. 73: 568-574.
- Hrudey, S.E., Chen, W. and Rousseaux, C.G. 1996. Exposure routes and bioavailability factors for selected contaminants. <u>In</u>: Bioavailability in Environmental Risk Assessment. CRC Press Inc., Lewis Publishers. 5:75-90.
- HSDB. 2000. Hazardous Substances Data Bank. http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB
- IARC. 1990. IARC monographs on the evaluation of carcinogenic risks to humans. Volume 49: Chromium, nickel and welding. Lyon, France. pp. 257-445. International Agency for Research on Cancer. Cited In: ATSDR, 2003a.
- IARC. 1991. Monographs on the Evaluation of Carcinogenic Risks to Humans. Chlorinated Drinking Water; Chlorinated by-products; Some Other Halogenated Compounds; Cobalt and Cobalt Compounds. International Agency for Research on Cancer. Lyon, France. pp. 52. Cited In: Lauwerys and Hoet, 2001.
- Ichikawa, Y., Kusaka, Y. and Goto, S. 1985. Biological monitoring of cobalt concentrations in blood and urine. Int Arch Occup Environ Health 55:269-276. Cited In: ATSDR, 2004a.
- IPCS. 2001. Environmental Health Criteria 224 Arsenic and Arsenic Compounds, 2nd ed. Published under the joint sponsorship of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO), and the World Health Organization (WHO). International Programme on Chemical Safety. Available on-line at: http://www.inchem.org/documents/ehc/ehc/ehc224.htm
- Johnson, M.J. 1987. Trace element loadings to sediments of fourteen Ontario lakes and correlations with concentrations in fish. Can J Fish Aquat Sci 44:3-13. Cited In: CEPA, 1993.

- JWEL. 2004. Port Colborne Community Based Risk Assessment. Human Health Risk Assessment Volume VI: Appendices 13 to 21. DRAFT. May, 2004. Jacques Whitford Environmental Limited.
- Kabata-Pendias, A. and Pendias, H. 1985. Trace Elements in Soils and Plants. 1st Edition. CRC Press Inc. Available on-line through RAIS at: <u>http://risk.lsd.ornl.gov/cgi-bin.background/generic</u>.
- Kabata-Pendias, A. and Pendias, H. 1992. Trace Elements in Soils and Plants. 2nd Edition. CRC Press Inc. Cited In: CCME, 1997.
- Kaye, W.E., Novotny, T.E. and Tucker, M. 1987. New ceramics-related industry implicated in elevated blood lead levels in children. Arch Environ Health 42:161-164. Cited In: ATSDR, 1999.
- Kirkpatrick, D.C. and Coffin, D.E. 1977. The trace metal content of a representative Canadian diet in 1972. Canadian Journal of Public Health, 68(Mar/Apr): 162-164.
- Kopp, J. F. and Kroner, P. T. 1970. Trace metals in water of the United States: a 5-year summary of trace metals in rivers and lakes of the US. (Oct. 1962-Sept. 1967) Cincinnati, Ohio, U.S. Department of the Interior. Cited in: WHO, 1977.
- Korte, N.E. and Fernando, Q. 1991. A review of arsenic(III) in groundwater. Critical Reviews in Environmental Control 21(1): 1-39. Cited In: CEPA, 1993.
- Kraus, T., Quidenus, G. and Schaller, K.H. 2000. Normal values for arsenic and selenium concentrations in human lung tissue. Arch Environ Contam Toxicol 38:384-389. Cited In: ATSDR, 2000.
- Landsberger, S. and Wu, D. 1995. The impact of heavy metals from environmental tobacco smoke on indoor air quality as determined by Compton suppression neutron activation analysis. Sci Total Environ 173-174(1-6):323-337. Cited In: ATSDR, 2000.
- Langlois, C. and Langis, R. 1995. Presence of airborne contaminants in the wildlife of northern Québec. Sci Total Environ, 160/161:391-402. Cited In: IPCS, 2001.
- Lantzy, R.J. and Mackenzie, F.T. 1979. Atmospheric trace metals: Global cycles and assessment of man's impact. Geochemica et Cosmochimica Acta 43:511-525. Cited In: ATSDR, 2004a.
- Lauwreys, R.R. 1999. Toxicologie Industrielle et Intoxications Professionnelles. Masson, Paris. Cited In: Lauwerys and Hoet, 2001.
- Lauwerys, R.R., and Hoet, P. 2001. Industiral Chemical Exposure: Guidelines for Biological Monitoring 3rd edition. Lewis Publishers, Boca, FL.
- Lawrence, J.F., Michalik, P., Tam, G., and Conacher, H.B.C. 1986. Identification of arsenobetaine and arsenocholine in Canadian fish and shellfish by high-performance liquid chromatography with atomic absorption detection and confirmation by fast atom bombardment mass spectrometry. J Agric Food Chem 434:315-319. Cited In: CEPA, 1993.
- Le, X.C. 1999. Arsenic speciation in the environment. Canadian Chemical News, 51(8): 18-20.

- Le, X.C., Cullen, W.R., and Reimer, K.J. 1993. Determination of urinary arsenic and impact of dietary arsenic intake. <u>In</u>: Talanta 40, 185. Cited In: Hrudey, *et al.*, 1996.
- Le, X.C., Cullen, W.R., and Reimer, K.J. 1994. Human urinary arsenic excretion after one-time ingestion of seaweed, crab, and shrimp. Clin Chem 40, 617. Cited In: Hrudey, *et al.*, 1996.
- Longnecker, M.P., *et al.* 1996. Use of selenium concentration in whole blood, serum, toenails, or urine as a surrogate measure of selenium uptake. Epidemiology 7: 384. Cited In: Lauwerys and Hoet, 2001.
- Mantoura, R.F.C., Dickson, A. and Riley, J.P. 1978. The complexation of metals with humic materials in natural waters. Estuarine Coastal Shelf Sci 6:387-408. Cited In: ATSDR, 2004a.
- Marvin, C.H., Charlton, M.N., Stern, G.A., Braekevelt, E., Reiner, E.J. and Painter, S. 2003. Spatial and temporal trands in sediment containination in Lake Ontario. J. Great Lakes Res. 29(2): 317-331.
- Masscheleyn, P.H., Delaune, R.D., and Patrick, W.H. Jr. 1991. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol 25-8:1414-1419.
- McGrath, S.P. 1995. Chromium and nickel. <u>In</u>: Heavy Metals in Soils, 2nd Edition. Alloway, B.J. (Ed.). Blackie Academic and Professional, London. pp. 152-178. Cited In: CCME, 2004.
- McKeague, J.A., and Wolynetz, M.S. 1980. Background levels of minor elements in some Canadian soils. Geoderma 24: 299-307.
- Meacher, D.M., Menzel, D.B., Dillencourt, M.D., Lubomir, F.B., Schoof, R.A., Yost, L.J., Eickhoff, J.C. and Farr, C.H. 2002. Estimation of multimedia inorganic arsenic intake in the U.S. population. Human and Ecological Risk Assessment 8(7): 1697-1721.
- Méranger, J.C. and Smith, D.C. 1972. The heavy metal content of a typical Canadian diet. Canadian Journal of Public Health, 63(Jan/Feb): 53-57.
- Méranger, J.C., Subramanian, K.S. and Chalifoux, C. 1979. A national survey for cadmium, chromium, copper, lead, zinc, calcium, and magnesium in Canadian drinking water supplies. Environ. Sci. Technol. 13: 707. Cited In: HC, 1992.
- Méranger, J.C., Subramanian, K.S. and Chalifoux, C. 1981. Survey for cadmium, cobalt, chromium, copper, nickel, lead, zinc, calcium, and magnesium in Canadian drinking water supplies. J. Assoc. Off. Anal. Chem. 64: 44. Cited In: HC, 1992.
- Méranger, J.C., Subramanian, K.S., and McCurdy, R.F. 1984a. Arsenic in Nova Scotian groundwater. Sci Total Environ 39:49-55. Cited In: CEPA, 1993.
- Méranger, J.C., Subramanian, K.S., Langford, C.H. and Umbrasas, R. 1984b. Use of an on site integrated pup sampler for estimation of total daily intake of some metals from tap water. Int. J. Environ. Anal. Chem. 17: 307. Cited In: HC, 1992.

- Metcalfe-Smith, J.L. 1994. Influence of species and sex on metal residues in freshwater mussels (Family Unionidae) from the St. Lawrence River, with implications for biomonitoring programs. Environ Toxicol Chem, 13(9):1433-1443. Cited In: IPCS, 2001.
- Michel, F.A. 1990. Interpretation of the chemistry of shallow groundwaters in southeastern Ontario. Contract Report No. 2273 for Health and Welfare Canada. p49. Cited In: CEPA, 1993.
- Miles, J.R.W. 1968. Arsenic Residues in Agricultural Soils of Southwestern Ontario. J Agr Food Chem. 16-4:620-622.
- Minoia, C., *et al.* 1990. Trace element reference values in tissues from inhabitants of the European community. In: A study of 46 elements in urine, blood and serum of Italian subjects. 1994a. Sci Total Environ 150: 121. Cited In: Lauwerys and Hoet, 2001.
- Mitchell, P., and Barr, D. 1995. The nature and significance of public exposure to arsenic: a review of its relevance to South West England. Environmental Geochemistry and Health. 17:57-82.
- MOE. 2002. Air Quality in Ontario 2001 Report: Appendix Tables. Ontario Ministry of the Environment. Available at: <u>http://www.ene.gov.on.ca/envision/techndocs/4521e_appendix.htm</u>. Cited In: CCME, 2004.
- MOE. 2004. Soil, Ground Water and Sediment Standards for Use Under Part XV.I of the Environmental Protection Act. March 9, 2004. Ontario Ministry of the Environment.
- MOEE. 1994. "Ontario Typical Range" of Chemical Parameters in Soil, Vegetation, Moss Bags and Snow. Version 1.0a. Phytotoxicology Section, Standards Development Branch, MOEE. April 1994. Ontario Ministry of Environment and Energy.
- Moore, J.W., and Ramamoorthy, S. 1984. Heavy Metals in Natural Waters. Chapter 2: Arsenic. Springer-Verlag, New York. 4-27. Cited In: CEPA, 1993.
- Moschandreas, D.J., Karuchit, S., Berry, M.R., *et al.* 2002. Exposure apportionment: ranking food items by their contribution to dietary exposure. J Expo Anal Environ Epidemiol 12: 233-243. Cited In: ATSDR, 2003a.
- Mudroch, A., and Capobianco, J.A. 1979. Effects of mine effluent on uptake of Co, Ni, Cu, As, Zn, Cd, Cr and Pb by aquatic macrophytes. Hydrobiologia, 64(3):223-231. Cited In: IPCS, 2001.
- Mundell, J.A., Hill, K.R., and Weaver, J.W. II. 1989. In situ case history: Leachable lead required precipitation immobilization. Hazardous Waste Management 23-27. Cited In: ATSDR, 1999.
- Murdoch, A., Sarazin, L., and Lomas, T. 1988. Summary of surface and background concentrations of selected elements in the Great lakes sediments. J. Great Lakes Res 14(2): 241-251. Cited In: CCME, 2004.
- NAS. 1976a. Selenium. Comm Med Biol Effects Environ Pollut Subcomm Selenium. Washington, DC: NAS. National Academy of Sciences. Cited In: ATSDR, 2003b.
- NAS. 1976b. Drinking water and health. Washington, DC: NAS. National Academy of Sciences. Cited In: ATSDR, 2003b.

- NAS. 1977. Medical and biologic effects of environmental pollutants: Arsenic. Washington, DC: National Academy of Sciences. Cited In: ATSDR, 2000.
- NAS. 1980. Drinking water and health. Washington, DC: NAS, 326-344. National Academy of Sciences. Cited In: ATSDR, 2003b.
- NAS. 2000. Selenium. In: Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Washington, DC: National Academy of Sciences, National Academy Press, 284-324.
- Nissen, P., and Benson, A.A. 1982. Arsenic metabolism in freshwater and terrestrial plants. Physiol Plant 54:446-450. Cited In: CEPA, 1993.
- Nixon, D.E., *et al.* 1989. Determination of serum nickel by graphite furnace atomic absorption spectrometry with Zeeman-effect background correction: values in a normal population and a population undergoing dialysis. Analyst 114: 1671. Cited In: Lauwerys and Hoet, 2001.
- Norstrom, R.J., Schweinsberg, R.E. and Collins, B.T. 1986. Heavy metals and essential elements in livers of the polar bear (*Ursus maritimus*) in the Canadian Arctic. Sci Total Environ, 48: 195-212. Cited In: IPCS, 2001.
- NRCC. 1978. Effects of Arsenic in the Canadian Environment. NRCC No. 15391. Associate Committee on Scientific Criteria for Environmental Quality, Ottawa. p.349. Cited In: CEPA. 1993.
- Nriagu, J.O., Rosa, F., Mudroch, A., and Legault, J. 1987. Arsenic and selenium mobility in Lake Erie sediments. <u>In</u>: Heavy Metal in the Environment; International Conference, New Orleans, September 1987, Volume 2 pp. 156-159. Cited In: CEPA, 1993.
- Nriagu, J.O. 1978. Lead in soils, sediments and major rock types. <u>In</u>: Nriagu, J.O. (ed). The Biogeochemistry of Lead in the Environment. Part A. Ecological cycles. Elsevier, Amsterdam. Cited In: CCME, 1999.
- Nriagu, J.O. 1983. Arsenic enrichment in lakes near the smelters at Sudbury, Ontario. Geochim Cosmochim Acta 47:1523-1526. Cited In: CEPA, 1993.
- Nriagu, J.O. and Pacyna, J.M. 1988. Qualitative assessment of worldwide contamination of air, wter and soils by trace metals. Nature 333(6169): 134-139. Cited In: CCME, 2004.
- Nriagu, J.O. 1989. A global assessment of natural sources of atmospheric trace metals. Nature 338:47-49. Cited In: ATSDR, 2004a.
- Nriagu, J.O., Lawson, G., Wong, H.K.T., *et al.* 1996. Dissolved trace metals in Lakes Superior, Erie, and Ontario. Environ Sci Technol 30:178-187. Cited In: ATSDR, 2004b.
- NSF. 1977. Lead in the environment. (Boggess WR, ed.) Washington, DC: National Science Foundation. NSFIRA-770214. National Science Foundation. Cited In: ATSDR, 1999.
- Oliveira, J.P., Pereira Bastos de Siqueira, M.E., and Sergio da Silva, C. 2000. Urinary nickel as bioindicator of workers' Ni exposure in a galvanizing plant in Brazil. Int Arch Occup Environ Health 73: 65. Cited In: Lauwerys and Hoet, 2001.

- O'Rourke, M.K., Van De Water, P.K., Jin, S., *et al.* 1999. Evaluations of primary metals from NHEXAS Arizona: distributions and preliminary exposures. J Expo Anal Environ Epidemiol 9: 435-445. Cited In: ATSDR, 2003a.
- OME. 1987. Organic vs. inorganic arsenic in selected food samples. Report No.87-48-45000-057. Toronto, Ontario, Canada, Ontario Ministry of the Environment, Hazardous Contaminants Coordination Branch. Ontario Ministry of the Environment. Cited In: Yost, *et al.*, 1998.
- OME. 1988. Thirty-seven municipal water pollution control plants. Pilot monitoring study. Vol. 1, Interim Report, December 1988. p.97. Ontario Ministry of the Environment. Cited In: CEPA, 1993.
- OME. 1989. Raw Data. Ontario Drinking Water Surveillance Program. Ontario Ministry of the Environment. Cited In: CEPA, 1993.
- PACE. 1983. The significance of trace substances in petroleum industry sludges disposed of on land: a literature survey. PACE Report No. 83-2. Ottawa. Petroleum Association for Conservation of the Canadian Environment. Cited In: CEPA 1993.
- Pacyna, J.M., and Ottar, B. 1985. Transport and chemical composition of the summer aerosol in the Norwegian arctic. Atmos Environ 19:2109-2120. Cited In: ATSDR, 2003a.
- Painter, S., Marvin, C., Rosa, F., Reynoldson, T.B., Charlton, M.N., Fox, M., Thiessen, P.A.L., and Estenik, J.F. 2001. Sediment contamination in Lake Erie: a 25-year retrospective analysis. J. Great Lakes Res. 27(4): 434-448.
- Pantsar-Kallio, M., and Manninen, P.K.G. 1997. Speciation of mobile arsenic in soil samples as a function of pH. Sci Total Environ 204(2):193-200. Cited In: ATSDR, 2000.
- Parris, G.E., and Brinckman, F.E. 1976. Reactions which relate to environmental mobility of arsenic and antimony. II. Oxidation of trimethylarsine and trimethylstilbine. Environ Sci Technol 10:1128-1134. Cited In: CEPA, 1993.
- Paschal, D.C., *et al.* 1998. Trace metals in urine of United States residents: reference range concentrations. Environ Res 76: 53. Cited In: Lauwerys and Hoet, 2001.
- Perwak, J., Bysshe, S., Goyer, M., *et al.* 1980. An exposure and risk assessment for copper. Washington, DC: EPA. EPA-440/4-81-015. Cited In: ATSDR, 2004b.
- Peryea, F.J. 1991. Phosphate-induced release of arsenic from soils contaminated with lead arsenate. Soil Sci Soc Am J 55:1301-1306. Cited In: CEPA, 1993.
- Pilgrim, W., and Schroeder, B. 1997. Multi-media concentrations of heavy metals and major ions from urban and rural sites in New Brunswick, Canada. Environmental Monitoring and Assessment 47(1): 89-108. Cited In: CCME, 2004.

- Polissar, L., Lowry-Coble, K., Kalman, D.A., Hughes, J.P., van Belle, G., Covert, D.S., Burbacher, T.M., Bolgiano, D., and Mortet, N.K. 1990. Pathways of human exposure to arsenic in a community surrounding a copper smelter. Environ Res 53:29-47.
- Rabano, E.S., Castillo, N.T., and Torre, K.J. 1989. Speciation of Arsenic in Ambient Aerosols Collected in Los Angeles. JAPCA 39-1: 76-80.
- RAIS. 2004. Generic Background Concentrations of Inorganics in Soil. The Risk Assessment Information System. Available on-line at: http://risk.lsd.ornl.gov/homepage/bg_search.shtml.
- Rasmussen, P.E., Subramanian, K.S., and Jessiman, B.J. 2001. A multi-element profile of housedust in relation to exterior dust and soils in the city of Ottawa, Canada. Science of the Total Environment 267: 125-140.
- Reddy, K.J., Wang, L., and Gloss, S.P. 1995. Solubility and mobility of copper, zinc and lead in acidic environments. Plant and Soil 171:53-58. Cited In: ATSDR, 1999.
- Reed, J.S., and Henningson, J.C. 1984. Acid precipitation and drinking water supplies. J Am Water Works Assoc 76:60-65. Cited In; ATSDR, 2004b.
- Richter, R.O., and Theis, T.L. 1980. Nickel. <u>In</u>: Nriagu, J.O. (Ed.). Nickel in the Environment. John Wiley and Sons, New York. pp. 189-202. Cited In: ATSDR, 2003a.
- Robberecht, H.J., and Deelstra, H.A. 1984. Selenium in human urine: determination, speciation and concentration levels. Talanta 31: 497. Cited In: Lauwerys and Hoet, 2001.
- Roberts, T.M., Hutchinson, T.C. and Paciga, J. 1974. Lead contamination around secondary smelters: Estimation of dispersal and accumulation by humans. Science 186:1120-1123. Cited In: HC, 1992.
- Robillard, S., Beauchamp, G., Paillard, G. and Bélanger, D. 2002. Levels of cadmium, lead, mercury and ¹³⁷caesium in caribou (*Rangifer tarandus*) tissues from northern Québec. Arctic 55(1): 1-9.
- Rosenfeld, I., and Beath, O.A. 1964. Selenium in relation to public health and Selenium poisoning in animals. <u>In</u>: Selenium: Geobotany, Biochemistry, Toxicity, and Nutrition. Academic Press, New York. pp. 141-226 and 279-289. Cited In: ATSDR, 2003b.
- Scheinberg, I.H. 1979. Human health effects of copper. <u>In</u>: Nriagu, J.O. (ed.). Copper in the environment. Part II. Health effects. New York, NY: John Wiley and Sons, 82-101. Cited In: ATSDR, 2004b.
- Schmidt, J.A., and Andren, A.W. 1980. The atmospheric chemistry of nickel. <u>In</u>: Nickel in the Environment, Nriagu, J.O. (Ed.). John Wiley and Sons, New York. pp. 93-135. Cited In: ATSDR, 2003a; CCME, 2004; CEPA, 1994.
- Schroeder, H.A. and Balassa, J.J. 1961. Abnormal trace metals in man: lead. J. Chron. Dis. 14:408-425. Cited In: WHO, 1977.

- Schroeder, W.H. 1982. Toxic Trace Elements Associated with Airborne Particulate Matter A Literature Review. Prepared by United Technology and Science Inc. and Ontario Research Foundation, Environment Canada, Atmospheric Environment Service, Project E.O. 82102. Cited In: Brzezinska-Paudyn, et al., 1986.
- Schroeder, W.H., Dobson, M., Kane, D.M. 1987. Toxic trace elements associated with airborne particulate matter: a review. Air Pollut Control Assoc 11: 1267-1287. Cited In: ATSDR, 2003a.
- Secor, C.L., and Lisk, D.J. 1989. Variation in the selenium content of individual Brazil nuts. Journal of Food Safety 9:279-281. Cited in: ATSDR, 1989.
- Semkin, R.G. 1975. A Limnological Study of Sudbury Area Lakes. M.Sc. Thesis, McMaster University, Geology Department, Hamilton, Ontario. Cited In: CCME, 2004.
- Seyler, P., and Martin, J. 1989. Biogeochemical processes affecting arsenic species distribution in a permanently stratified lake. Environ Sci Technol 23:1258-1325. Cited In : Wade *et al.*, 1993.
- Shamberger, R.J. 1981. Selenium in the environment. Sci Total Environ 17:59-74. Cited In: ATSDR, 2003b.
- Sharpe, D.R. and Rasmussen, P.E. 1996. Soil Geochemical Survey of Southern Ontario. Terrain Sciences Division, Geological Survey of Canada. Cited In: CCME, 2004.
- Smith, D.C. 1971. Pesticide Residues in the Total Diet in Canada. Pesticide Science. Vol. 2, No. 2.
- Smith, I.C. and Carson, B.L. 1981. Trace metals in the environment. Ann Arbor, MI: Ann Arbor Science Publishers. Cited In: ATSDR, 2004a.
- Snodgrass, W.J. 1980. Distribution and behaviour of nickel in the aquatic environment. <u>In</u>: Nickel in the Environment. Nriagu, J.O. (Ed.). John Wiley and Sons, New York. pp. 203-274. Cited In: CCME, 2004.
- Sternlieb, I. and Scheinberg, I.H. 1977. Human copper metabolism. <u>In</u>: Medical and biologic effects of environmental pollutants-Copper. Washington, DC: National Academy of Sciences. Cited In: ATSDR, 2004b.
- Stiff, M.J. 1971. The chemical states of copper in polluted fresh water and a scheme of analysis to differentiate them. Water Res 5:585-599. Cited In: ATSDR, 2004b.
- Subramanian, K.S., and Méranger, J.C. 1984. A Survey of Sodium, Potassium, Barium, Arsenic, and Selenium in Canadian Drinking Water Supplies. <u>In</u>: Atomic Spectroscopy. Vol.5, No.1. ISSN 0195-5373.
- Sunderman, F.W. Jr. 1993. Biological monitoring of nickel in humans. Scand J Work Environ Health 19(Suppl 1): 34-38. Cited in: ATSDR, 2003a.
- Sunderman, F.W. Jr., and Oskarsson, A. 1988. Nickel. <u>In</u>: Metals and Their Compounds in the Environment. Merian, E. (Ed.). VCG Verlagsgesellschaft, Weinham, FRG. pp. 1-9. Cited In: CCME, 2004.

- Sutherland, D. 1989. Assessment of Gold Mine Impacts on the Benthic Environment of Yellowknife Bay, N.W.T. Environment Canada, Western and Northern Region, Yellowknife, March 1989. p.55. Cited In: CEPA, 1993.
- Swanson, C.A. *et al.* 1990. Selenium intake, age, gender, and smoking in relation to indices of selenium status of adults residing in a seleniferous area. Am J Clin Nutr 52: 858. Cited In: Lauwerys and Hoet, 2001.
- Takagi, Y., Matsuda, S., Imai, S., *et al.* 1986. Trace elements in human hair: An international comparison. Bull Environ Contam Toxicol 36:793-800. Cited In: ATSDR, 2003a.
- Takagi, Y., Matsuda, S., Imai, S., *et al.* 1988. Survey of trace elements in human nails: An international comparison. Bull Environ Contam Toxicol 41:690-695. Cited In: ATSDR, 2003a.
- Tamaki, S., Frankenberger, W.T. 1992. Environmental biochemistry of arsenic. Rev Environ Contam Toxicol 124:79-109. Cited In: Wade *et al.*, 1993., and ATSDR, 2000.
- Temple, P.J., Linzon, S.N. and Chai, B.L. 1977. Contamination of vegetation and soil by arsenic emissions from secondary lead smelters. Environ Pollut. 12:311-320. Cited In: IPCS, 2001.
- Templeton, D.M., Sunderman, F.W. Jr. and Herber R.F.M. 1994. Tentative reference values for nickel concentrations in human serum, plasma, blood, and urine: Evaluation according to the TRACY protocol. Sci Tot Environ 148: 243-251. Cited In: ATSDR, 2003a.
- Thompson, T.S., Le, M.D, Kasick. A.R., *et al.* 1999. Arsenic in well water supplies in Saskatchewan. Bull Environ Contam Toxicol 63:478-483. Cited In: ATSDR, 2000.
- Traversy, W.J., Goulden, P.D., Sheikh, Y.M., and Leacock, J.R. 1975. Levels of Arsenic and Selenium in the Great Lakes Region. Environment Canada. Scientific Series No.58.
- Trebig, G., and Schaller, K.H. 1984. Biological Indicators for the Assessment of Human Exposure to Industrial Chemicals: Copper. Commission of the European Communities, Industrial Health and Safety, Luxembroug. Cited In: Lauwerys and Hoet, 2001.
- Tremblay, G.H., and Gobeil, C. 1990. Dissolved arsenic in the St Lawrence Estuary and the Saguenay Fjord, Canada. Mar Pollut Bull **21**(10) 465–469. Cited In: IPCS, 2001.
- Trivedi, T. 2004. Personal communication from Tanya Trivedi, March 16, 2004. Unpublished monitoring data on metal concentrations in walleye from inland waters collected for the National Contaminants Information System (NCIS). Fisheries and Oceans Canada, Burlington, Ontario. Cited In: CCME, 2004.
- U.S. DHHS, 2002. Public Health Service, Centers for Disease Control and Prevention (CDC). Cited In: ATSDR, 2003a.
- U.S. EPA. 1979. Water-related environmental fate of 129 priority pollutants. Volume 1: Introduction and technical background, metals and inorganic pesticides and PCBs. Washington, DC:

Environmental Protection Agency. U.S. EPA. EPA-440/4-79-029a, 13-1 - 43-19. Cited In: ATSDR, 1999.

- U.S. EPA. 1980. Ambient water quality criteria for lead. U.S. Environ. Protection Agency Rep. 440/5-80-057. 151 pp. Avail. from Natl. Tech. Infor. Serv., 5285 Port Royal Road, Springfield, Virginia 22161. Cited In: Eisler, 1988c.
- U.S. EPA. 1982a. Exposure and risk assessment for arsenic. Washington, DC: U.S. EPA, Office of Water Regulations and Standards. PB 85-221711. EPA 440/4-85-005. 1.1-4.68. Environmental Protection Agency. Cited In: ATSDR, 2000.
- U.S. EPA. 1982b. Inductively coupled plasma-atomic emission spectrometric method for trace element analysis of water and wastes - method 200.7. Cincinnati, OH: U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory. Environmental Protection Agency. Cited In: ATSDR, 2000.
- U.S. EPA . 1984. Health Assessment Document for Inorganic Arsenic, EPA 600/8-83-021F, Environmental and Criteria Assessment Office Research Triangle Park, NC. Environmental Protection Agency. Cited In: Hrudey, *et al.*, 1996.
- U.S. EPA. 1985a. Estimation of nickel species in ambient air. Research Triangle Park, NC. Pollution Assessment Branch, U.S. EPA. Environmental Protection Agency. Cited In: ATSDR, 2003a.
- U.S. EPA. 1985b. U.S. EPA. Code of Federal Regulations. 40 CFR 80.20. Environmental Protection Agency. Cited In: ATSDR, 1999.
- U.S. EPA. 1986. Air quality criteria for lead. Research Triangle Park, NC: U.S. EPA, Office of Research and Development, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. EPA 600/8-83-028F. Environmental Protection Agency. Cited In: ATSDR, 1999.
- U.S. EPA. 1989. National primary drinking water regulations. U.S. EPA. Code of Federal Regulations. 40 CFR 141, 142. Environmental Protection Agency. Cited In: ATSDR, 1999.
- U.S. EPA. 2003. Guidance for Developing Soil Screening Levels. OSWER Directive 92857-55. U.S. EPA, Office of Solid Waste and Emergency Response, November 2003. Environmental Protection Agency. http://www.epa.gov/ecotox/ecossl/pdf/ecossl_guidance_chapters.pdf.
- U.S. FDA. 2004. Total Diet Study Market Baskets 1991-3 through 2002-4. Food and Drug Administration.
- Vaessen, H.A., and van Ooik, A. 1989. Speciation of arsenic in Dutch total diets: Methodology and results. Z. Lebensm Unters Forsch 189:232-235. Cited In: ATSDR, 1997.
- Valentine, J.L., Kang, H.K., and Spivey, G. 1979. Arsenic levels in human blood, urine, and hair in response to exposure *via* drinking water. Environ Res 20: 24. Cited In: Lauwerys and Hoet, 2001.

- van Voris, P., Page, T.L., Rickard, W.H., Droppo, J.G., and Vaughan, B.E. 1985. Report for the Canadian Electrical Assoc. Volume 1, Contract No. 000G194. Environmental implications of trace element releases from Canadian coal-fired generating stations. Phase II. Final Report. Cited In: CEPA, 1993.
- Vélez, D., and Montoro, R. 1998. Arsenic speciation in manufactured seafood products. Journal of Food Protection, 61(9): 1240-1245.
- Veneman, P.L.M., Murray, J.R., and Baker, J.H. 1983. Spatial distribution of pesticide residues in a former apple orchard. J Environ Qual 12:101-104. Cited In: CEPA, 1993.
- Versieck, J. 1985. Trace elements in human body fluids and tissues. Crit Rev Clin Lab Sci 22: 97. Cited In: Lawerys and Hoet, 2001.
- Versieck, J., and Cornelis, R. 1989. Trace Elements in Human Plasma or Serum. CRC Press, Boca Raton, FL. Cited In: Lauwerys and Hoet, 2001.
- Wade, M.J., Davis, B.K., Carlisle, J.S., Klein, A.K., and Valoppi, L.M. 1993. Environmental Transformation of Toxic Metals. Occupational Medicine. 8-3:575-601.
- Wagemann, R., Snow, N.B., Rosenberg, D.M., and Lutz, A. 1978. Arsenic in sediments, water and aquatic biota from lakes in the vicinity of Yellowknife, Northwest Territories, Canada. Arch Environ Contam Toxicol 7:169-191. Cited In: CEPA, 1993., and IPCS, 2001.
- Walsh, L.M., and Keeney, D.R. 1975. Behaviour and phytotoxicity of inorganic arsenicals in soils. Chapter 3. <u>In</u>: Arsenical pesticides. Edited by E.A. Woolson. ACS Symp Ser 7. pp. 35-52. Cited In: NRCC, 1978.
- Walsh, L.M., Summer, M.E., and Keeney, D.R. 1977. Occurrence and distribution of arsenic in soils and plants. Environ Health Persp 19:67-71.
- Walsh, P.R., Duce, R.A., and Fasching, J.L. 1979. Tropospheric arsenic over marine and continental regions. J Geophys Res 84(C4): 1710-1718. Cited In: CEPA, 1993.
- Warren, H.V., Delavault, R.E. and Cross, C.H. 1970. Base metal pollution in soils. <u>In</u>: Hemphill, D.D. (ed). Trace Substances in Environmental Health III, Proceedings of the University of Missouri's 3rd Annual Conference on Trace Substances in Environmental Health. University of Missouri, Columbia, MO. Cited In: CCME, 1999.
- Weiler, R.R. 1987. Unpublished data. Ontario Ministry of the Environment. Toronto, Ontario 87-48-45000-057 (cited in U.S. EPA, 1988). Cited In: CEPA, 1993.
- Whanger, P.D., *et al.* 1988. Blood selenium and glutathione peroxidase activity of populations in New Zealand, Oregon, and South Dakota. FASEB J 2: 2996. Cited In: Lauwerys and Hoet, 2001.
- WHO. 1977. Environmental Health Criteria (EHC) Monographs No. 3 Lead. World Health Organization.

FINAL REPORT

- WHO. 1980. Recommended health-based limits in occupational exposure to heavy metals. Report of a WHO study group. Geneva: World Health Organization, (Technical Report Series 647).
 World Health Organization. Cited In: ATSDR, 1988.
- WHO. 1981. Environmental Health Criteria 18: Arsenic. International Programme on Chemical Safety (IPCS), Geneva, Switzerland. World Health Organization.
- WHO. 1989. Environmental Health Criteria (EHC) Monographs No. 85 Lead, Environmental Aspects. World Health Organization.
- WHO. 1996. Trace elements in human nutrition and health. Copper. Geneva, Switzerland: WHO, 123-143. World Health Organization.Cited In: ATSDR, 2004b.
- Wilhelm, M., and Idel, H. 1996. Hair Analysis in Environmental Medicine. Zbl. Hyg. 198:485-501.
- Wilson, S., Murray, J., and Huntington, H. 1998. AMAP Assessment Report: Arctic Pollution Issues. Arctic Monitoring and Assessment Programme, Oslo, Norway. Cited In: CCME, 2004.
- Yamoto, N. 1988. Concentrations and chemical species of arsenic in human urine and hair. Bull Environ Contam Toxicol 105: 836. Cited In: Lauwerys and Hoet, 2001.
- Yan-Chu, H. 1994. Arsenic distribution in soils. <u>In</u>: Nriagu, J.O., ed. Arsenic in the environment, part 1: Cycling and characterization. New York, NY: John Wiley and Sons, Inc., 17-49. Cited In: ATSDR, 2000.
- Yee, E. 2004. Data on background concentrations of metals within various metals in northern Manitoba as reported in the Lynn Lake Risk Assessment completed by Dillon Consulting. Manitoba Conservation, Winnipeg, Manitoba. Personal communication from Edwin Yee on February 5, 2004. Cited In: CCME, 2004.
- Yost, L.J., Schoof, R.A., and Aucoin, R.1998. Intake of Inorganic Arsenic in the North American Diet. Human and Ecological Risk Assessment. Vol. 4, No. 1, pp. 137-152.
- Young, E.G., and Rice, F.A.H. 1944. On the occurrence of arsenic in human hair and its medicolegal significance. J Lab Clin Med 29:439-446. Cited In: Hindmarsh, 1977.
- Zoltai, S.C. 1988. Distribution of base metals in peat near a smelter at Flin Flon, Manitoba. Water Air Soil Pollut, 37(1/2):217-228. Cited In: IPCS, 2001.
- Zukovickaja, A.L., Zamuatkina, A.A. and Lukasev, K.I. 1966. Trace elements in the water of the upper Dnepr River. Akad. Nauk. BSSR 10: 891-893. Cited In: WHO, 1977.